
Assessing Tools for Finding Bugs in Concurrent Java

Alexandros Spathoulas
T
H
E

U
N I V E

R
S

I
T
Y

O
F

E
D

I N B
U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2014

Abstract

Nowadays, concurrent programming is used more and more in order to make multicore

systems achieve the best possible performance. However, the usage of concurrent programming

introduces more errors (usually more difficult to be identified) than sequential programming

and for this reason it is very important to have tools that can identify such errors. The most

used technique to identify errors in multi-threaded environment is code analysis; it consists of

static and dynamic analysis. Code analysis can be done manually or by using automated tools

and it happens at an early stage in the software development life cycle.

The number of static analysis tools has increased rapidly in the last decade. In order to

choose the appropriate tool each developer must identify what is really needed, learn about

the strengths and weaknesses of the existing tools and then choose the most suitable. In this

project, we focus on helping programmers to learn how to evaluate properly a tool and choose

the right one between free open-source (FindBugs), commercial (ThreadSafe) and tools that

appeal mostly to experienced developers (Chord).

Moreover, we do a theoretical and experimental analysis of three static analysis tools

(ThreadSafe, FindBugs and Chord) that are used for detecting a variety of Java concurrency

bugs. The tools are evaluated by their accuracy, performance, usability and the ability to detect

obfuscated programs. Moreover, for the evaluation, we use a test suite (by combining reliable

resources like IBM Haifa Research Lab and CERT) containing Java programs with bugs and

see what errors can be identified and explain why some of them cannot be captured.

iii

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Professor Don Sannella,

who recognised my capabilities, trusted me and was always there to help me. Without his help

and support it would be impossible to finish the project.

Furthermore, I would like to thank Contemplate Ltd for providing a licence for ThreadSafe

until the end of August. However, the licence would be useless without the help in order to set

up and configure the tool.

Last but not least, I would like to thank my family for encouraging me and giving me the

ability to study in Edinburgh and learn so many things.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Alexandros Spathoulas)

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Approach . 2

1.4 Thesis outline . 3

2 Background 5

2.1 Concurrent programming . 5

2.1.1 Overview . 5

2.1.2 Advantages and Disadvantages . 6

2.1.3 Problems in concurrent programming 6

2.2 Code analysis . 7

2.2.1 Static analysis . 8

2.2.2 Dynamic analysis . 8

2.2.3 Static analysis vs Dynamic Analysis 9

2.2.4 False Positives and False Negatives 9

2.3 Static analysis tools . 10

2.4 Previous Evaluations of Static Analysis Tools 10

3 Tools and Configuration 13

3.1 Tools . 13

3.1.1 ThreadSafe . 13

3.1.1.1 Overview . 13

3.1.1.2 Requirements . 13

3.1.2 FindBugs . 14

3.1.2.1 Overview . 14

3.1.2.2 Requirements . 15

3.1.3 Chord . 15

3.1.3.1 Overview . 15

vii

3.1.3.2 Requirements . 15

3.2 Test Suite . 16

3.3 Configuration . 20

3.3.1 System configuration . 20

3.3.2 Tools installment and configuration 20

3.3.2.1 ThreadSafe . 20

3.3.2.2 FindBugs . 23

3.3.2.3 Chord . 25

4 Evaluation of the tools 27

4.1 Usability . 27

4.1.1 ThreadSafe . 27

4.1.2 FindBugs . 28

4.1.3 Chord . 30

4.1.4 Summary . 30

4.2 Accuracy . 31

4.2.1 1a - Java Concurrency Guidelines . 31

4.2.1.1 Results and Discussion . 31

4.2.1.2 False Positive/Negatives . 35

4.2.2 1b - Eytani Benchmark . 36

4.2.3 Part 2 - Web . 38

4.2.4 Part 3 - Open-Source Projects . 39

4.3 Performance . 40

4.3.1 Time . 40

4.3.2 Bug representation . 44

4.4 Obfuscation . 48

4.5 Summary . 53

5 Conclusion and future work 55

5.1 Conclusion . 55

5.2 Future Work . 56

Bibliography 59

viii

List of Figures

3.1 Example Locking Bug . 17

3.2 Example Benchmark Bug . 18

3.3 Example Common Deadlock Bug . 19

3.4 ThreadSafe Eclipse plug-in . 21

3.5 ThreadSafe Command Line Configuration . 22

3.6 ThreadSafe Configuration . 22

3.7 FindBugs Plug-in Reporter Configuration . 23

3.8 FindBugs Plug-in Detector Configuration . 24

3.9 FindBugs GUI New Project . 25

3.10 FindBugs GUI Results . 25

3.11 Chord Properties . 26

3.12 Chord Execution . 26

4.1 ThreadSafe Plug-in . 27

4.2 ThreadSafe CommandLine . 28

4.3 FindBugs GUI . 29

4.4 FindBugs CommandLine . 29

4.5 Chord CommandLine . 30

4.6 Java Concurrency Guidelines Graph . 35

4.7 Deadlock and Race condition graph . 39

4.8 ThreadSafe Command Line Results Representation 1 45

4.9 ThreadSafe Command Line Results Representation 2 45

4.10 ThreadSafe Accesses . 46

4.11 Chord Results Representation . 46

4.12 FindBugs Plug-in Results Representation . 47

4.13 FindBugs GUI Results Representation . 47

4.14 Obfuscation Pattern 1 Example . 49

4.15 Obfuscation Method 2 Example . 51

ix

List of Tables

2.1 False positives/negatives . 9

2.2 Static Analysis Tools . 10

3.1 Java Concurrency Guidelines . 16

3.2 Eytani Benchmark LOC . 17

3.3 Common Bugs . 18

3.4 Open-Source Projects . 19

3.5 Final Test Suite table . 20

4.1 Visibility and Atomicity Bugs . 31

4.2 Explanation of VNA Bugs . 32

4.3 Locking Bugs . 32

4.4 Explanation of LCK Bugs . 33

4.5 Thread APIs Bugs . 33

4.6 Explanation of THI Bugs . 34

4.7 Thread-Safety Miscellaneous Bugs . 34

4.8 Explanation of TSM Bugs . 34

4.9 Guards Bugs . 35

4.10 Recall Graph . 36

4.12 IBM benchmark Bugs . 37

4.13 Deadlocks Bugs . 38

4.14 Race Condition Bugs . 38

4.15 Open Source Projects Bugs . 39

4.17 FindBugs Execution Times . 40

4.19 ThreadSafe Execution Times . 40

4.20 FindBugs and ThreadSafe Execution Times Graph 41

4.22 Time Performance Table . 42

4.23 Graph for ThreadSafe and FindBugs for 60 to 600 lines of code 42

4.24 Graph for ThreadSafe and FindBugs for 60 to 600 lines of code for Chord . . . 42

xi

4.25 Chord Deadlock-analysis Outliers . 43

4.26 Open Source Projects Time Performance . 44

4.27 Graph for ThreadSafe and FindBugs for JOscar and K9Mail 44

4.29 Benchmark Obfuscated Programs . 48

4.30 Finbugs Results on LCK after Obfuscation with Pattern 1 49

4.31 Benchmark Pattern 1 Results . 50

4.32 FindBugs Results on LCK after Obfuscation with Pattern 2 51

4.33 FindBugs Results on THI after Obfuscation with Pattern 2 52

4.34 Benchmark Pattern Results . 52

4.35 Obfuscation Results . 53

xii

Chapter 1

Introduction

1.1 Overview

Concurrency is the idea of making multiple things happening in parallel. In real life, many

things like traffic movements, bank transactions and office tasks are happening concurrently. In

order to be able to model or control these types of operations, it was very important to develop

new programming models and more specifically concurrent programming.

On the one hand, concurrent programs comes with many benefits, such as the execution of

more than one task in a certain time period and interaction between tasks. On the other hand,

writing correct concurrent programs can be difficult and because of that the programmer must

take into consideration issues like safety, liveness and fairness.

Java is one of the first programming languages that had the feature of concurrency designed

into the language from the very beginning. Concurrent Java is used widely and nowadays pro-

grams are becoming larger and more complex. Additionally, the difficulty in reproducing a

concurrency bug and the fact that concurrency bugs can be intermittent make it particularly

difficult to find and fix bugs. Apart from the bugs that exist in sequential programs, in concur-

rent Java there are special bugs like deadlocks and race conditions that are explained in Chapter

2.

Code analysis is a widely-used technique to detect bugs in most programming languages.

One of the areas that code analysis finds errors is concurrency. Especially in Java a lot of work

has been done to develop tools and find ways to improve the analysis. There are two types of

analysis: static and dynamic. The main difference between them is that static analysis [38] can

be performed to a program without executing it and dynamic analysis involves executing the

program [32]. Between these two options, static analysis is the one that can be used before

program is completely finished and accounts to exhaustive testing [38].

Even though the existing static analysis tools use some of the same basic techniques for

1

2 Chapter 1. Introduction

finding concurrency bugs there are crucial differences in their accuracy, performance and us-

ability in detecting bugs. Another very important difference between static analysis tools is

their ability to avoid false alarms (false positives) and missed bugs (false negatives). Both of

them are dangerous, but false negatives are more dangerous, because these are bugs that can

remain undetected until they arise in production without warning.

1.2 Motivation

Concurrency bugs are a very special type of bugs in programming. The detection of them

is very difficult and it becomes even harder when a programmer tries to detect them manually.

This happens because the events in the threads of a concurrent program can be executed in a

different order each time the program runs. As a result, bugs can evade even the most rigorous

testing regimes and it is rarely possible to reproduce an error.

Developers of programming tools have tried to meet the challenge of finding concurrency

bugs by implementing new code analysis tools or by developing new features for the existing

tools. On the one hand, there are commercial tools like Coverity Static Analysis or Thread-

Safe and on the other hand free open-source tools like FindBugs, Chord and JLint. In the

last decades, the number of static analysis tools has increased rapidly and it is difficult for a

programmer or a company to choose the most appropriate tool. When a tool is needed the

user must take into consideration his requirements from it and think about performance and

scalability.

The specific research and evaluation of the tools provided by this project can be used as a

guide for a programmer to understand what really matters in choosing the right static analysis

tool that matches with his needs and how it can provide the best possible results.

1.3 Approach

This project is based on the idea of choosing three static analysis tools and evaluating them

according to their usability, accuracy and performance.

The first step was to study concurrent Java in order to understand how threads work and

how they are used. Then, research on concurrency bugs was important in order to find the most

common bugs and to understand why they lead to errors. The third step was to study how code

analysis and especially static analysis tools work to discover concurrency bugs. Finally, three

tools were chosen in order to make the evaluation.

The most extensive part of the tool evaluation included the creation of a test suite with

1.4. Thesis outline 3

programs that include bugs followed by comparison of the accuracy of the tools on this set of

tests. The test suite is separated into parts that involve the same type of bugs. Furthermore, the

performance of the tools is judged by the time they need to find a bug or not and the information

that is given with the alert that is produced when a bug is found. It is also important to evaluate

the tools according to usability and how easy is to configure and use them.

A special part of the project that is added to the evaluation of the tools is obfuscation. More

specifically, we try to ”hide” bugs in source code and examine how easily each tool can be

thwarted.

Finally, the conclusion of the project is a final evaluation of the tools that are used and

generally the efficiency of static analysis.

1.4 Thesis outline

This dissertation contains 5 chapters. After the Introduction there are:

Chapter 2 provides a background on concurrent programming and bugs that exist in this spe-

cific domain. Furthermore, code analysis and its types (static and dynamic) are explained

and information about certain related published papers are provided.

Chapter 3 is about tools that exist for finding concurrency bugs and especially those that are

used in this specific project. Furthermore, the test suite that is used for the evaluation of

the tools is presented with details about every part of it. The final part of the chapter is

about the configuration of the system and the tools.

Chapter 4 presents the evaluation of the tools according to the results from the test suite. The

chapter contains 4 sections and a summary. Each section contains a different evaluation

of the tools according to usability, accuracy, performance and a special part that evaluates

the tools according to their ability to detect bugs in obfuscated programs.

Chapter 5 summarizes the whole project in a few paragraphs and suggests future work that

can be done.

Chapter 2

Background

2.1 Concurrent programming

2.1.1 Overview

The first computers had a single CPU processor and were able to execute only one program

at a time. However, with the development of new computer systems, it was very important

to improve the processors’ performance. Computer multitasking is the scenario of sharing the

resources of a single processor in order to interleave the execution of multiple jobs. Otherwise

computer resources are wasted while waiting for input. As new systems were introduced, the

challenges in programming were increased and this led to the evolution of multithreading [5].

Multithreading is the ability of a single program to contain multiple threads that can run

simultaneously. The main difference with multitasking is that threads are part of a single pro-

gram that can be coordinated in order to achieve work together. Later, the development of

multicore processors enabled threads to run on separate processors.

Along with others, from the very beginning Java was one of the first languages that offered

multithreading capabilities to developers.

There are two basic units of execution, processes and threads [12]. They are both very

important in computers with multiple processors, however they are active in single execution

core systems as well. Processes are execution environments which are included in programs

or applications. Threads are lightweight processes that exist within a process and need fewer

run-time resources than a process. The main difference between processes and threads is that

processes have their own address space and threads share the resources that belong to the pro-

cess in which they are contained, like memory, CPU and files [12]. The memory that is shared

between threads is used to establish communication between them and provide synchronization

for their activities. Java is able to use both processes and threads, however features for threads

are built directly into the language.

5

6 Chapter 2. Background

2.1.2 Advantages and Disadvantages

The advantages of concurrent programming are [3]:

⇒ Resources can be used in a better way by complex programs in architectures with multi-

ple cores.

⇒ Short-running tasks are not delayed by long-running tasks.

⇒ Tasks are controlled in a better way when they need resources in order to continue with

their execution.

⇒ There is more protection because of the isolation of the activities in threads.

The disadvantages are [2, 3]:

⇒ Danger of special bugs like deadlock and race condition.

⇒ Threads can be expensive because of scheduling and synchronization.

⇒ The state of program should not be corrupted by the tasks.

⇒ Concurrent programs might need more time to run than their corresponding sequential

version (use of one single thread) [2] even with multiple processors, if the task is inher-

ently sequential.

2.1.3 Problems in concurrent programming

Generally, it is difficult to write and understand concurrent programs because of the po-

tentially different orderings of events of the several threads and the absence of proper timing

over the order. As far as concerns concurrency bugs, they are harder to be detected in compar-

ison with usual bugs, as it is extremely hard to reproduce them. The main reason for this is

that there are many possible interleavings between thread’s operations and it is not under the

programmer’s control which of them is chosen.

In a single-threaded program usually debugging is not very hard for developers. In concur-

rent programs it is more difficult because of the several synchronizations that might exist and

the communication and the interaction between the threads. Basically, there are two kinds of

issues: safety and liveness issues [11].

On the one hand, a safety property ensures that nothing bad will happen [39]. The main

idea behind safety is correctness [40]. Correctness means that each class of the program follows

its specifications. An example of a safety property is lack of race condition. On the other hand,

a liveness property asserts that something good eventually happens. It is extremely significant

for all the threads in a concurrent program to have at least a chance to execute. Examples of

liveness are fairness and lack of deadlock or livelock [29].

2.2. Code analysis 7

The most common categories of problems in concurrent programming are:

Deadlock

A deadlock is a situation where multiple threads wait forever because of a cyclic locking

dependency [40]. More specifically, a deadlock occurs when a thread is in a waiting state be-

cause it needs resource A that is held by another thread, which also needs another resource,

held by the first thread, in order to provide resource A to the first thread. When the thread is

not able to change its state, then we say that the system is in a deadlock [43, 10].

Livelock

Livelock is similar to deadlock. The main difference is that in livelock threads act but there

is no progress to reach the final goal of the program. In this scenario two or more processes

continually change their state in response to changes in other processes. As a result, none of

the processes complete.

A simple example used to describe livelock problem is a scenario where two people meet

in a path and each one tries to step around the other. However, they finally end up changing

from side to side getting in each other’s way [43].

Starvation-Fairness

A thread can starve to death when it is not granted CPU time because other threads are

granted too much time. The solution to this is fairness, which is the idea of granting all the

threads a chance to execute.

Starvation can happen because of not setting priorities wisely or incorrect synchronization.

Fairness can be achieved by using locks properly and synchronizing [5].

Race Condition

A race condition is a situation where two or more threads that have access to the same data

try to change it at the same time [10]. The main reason for a race condition is a flaw in the

ordering or timing of the events. In other words, a race condition happens when the correctness

of the computation of a program depends on timing [40].

2.2 Code analysis

As mentioned previously, there are two kinds of code analysis: static and dynamic. Sim-

ply, static analysis is about gathering information about a program from the source code and

dynamic analysis from its execution.

8 Chapter 2. Background

2.2.1 Static analysis

Static analysis is about detecting errors in source code without executing it [39]. It is

performed in a special phase of the Security Development Lifecycle called Code Review (or

White-box testing) [25]. For this project, the specific process deals with understanding the code

structure and providing information about how code adheres with industry standards. Static

analysis can be done manually (called ”program understanding” or ”program comprehension”),

however it is very time consuming so mostly it is done by automated tools.

Static analysis tools track vulnerabilities in non-running code by using the following two

techniques:

Data Flow Analysis is used to gather data about the dynamic behaviour of a program in a

static way.

Taint Analysis identifies variables that have been tainted (potentially equal to invalid values)

by the users that can lead to vulnerabilities. There are languages like Ruby and Perl that

have taint checking built into them [16].

The advantages of static analysis are:

• It is fast when automated tools are used.

• Entire codes bases can be scanned.

• Provides the ability of finding defects early in the development (even before the code is

finished).

The disadvantages of static analysis are:

• Manual static analysis is time consuming.

• Not all languages are supported by the tools.

• False positives (false alarms) and false negatives (bugs not-found) are produced because

of high complexity or size of a program.

• Vulnerabilities that are introduced in the runtime environment are not found.

2.2.2 Dynamic analysis

Dynamic analysis is the technique of analysing a program during its execution time. The

process contains steps like preparation of input data, run of the program and analysis of the

output. The goal is to find bugs in a program while it is running and not by examining the

code [22]. Besides Java, dynamic analysis can be used in languages like C/C++, C#, Python,

PHP etc.

Some of the advantages [19] of dynamic analysis are:

2.2. Code analysis 9

• Identifies problems in runtime environment.

• Can be used against any application.

• Tools are flexible.

• Is able to collect temporal information.

• Has access to actual running situation.

There are also disadvantages [19] like:

• Detects errors only on the route defined by the input data.

• Only one path can be checked at a time and the developer must run many tests to check

all the paths.

• A lot of effort is required by the user.

• When the test runs on a real processor, execution of incorrect code may lead to undesir-

able situations.

• The automated tools that exist produce false positives and false negatives.

Some of the most used existing dynamic analysis tools are Avalanche, Parasoft Jtest, Purify

and Gcov.

2.2.3 Static analysis vs Dynamic Analysis

On the one hand, static analysis refers to strategies used to analyse code for all the possible

paths before the execution. On the other hand, dynamic analysis is used to verify the properties

of the system for one execution trace. The analysis of all the paths makes static analysis the

most desirable technique [26]. However, an advantage of dynamic analysis with respect to

static is that certain information is available only at runtime [31]. Moreover, the system’s

behaviours might depend on the environment where the program is executed.

However, the two techniques can be combined and the user can benefit from the ”sound-

ness” of static and of the efficiency of dynamic analysis. Soundness is that properties hold for

all the paths [31].

2.2.4 False Positives and False Negatives

Below there is a table that characterises false negatives and false positives:

FOUND ???

YES NO

ARE THEY YES True Positive False Negative

BUGS ??? NO False Positive True Negative

10 Chapter 2. Background

Table 2.1: False positives/negatives

A false positive is a warning produced by the tool but is not an actual bug. A false negative

is a bug that exists in the program but the tool did not manage to find it. The main reason

false positives arise is that the detected source code has many similarities with known malware

codes. False Negatives are bugs that the tool was not able to detect. As it can be understood,

it is very important for an analysis tool to minimise as much as possible the amount of false

positives and false negatives and identify only the real bugs. By achieving this, the tool will

finally provide the user the ability to work only on the real problems.

2.3 Static analysis tools

A table of static analysis tools that exist for Java follows:

Open-Source Commercial

FindBugs ThreadSafe (Contemplate)

Chord Security Advisor (Coverity)

PMD IntelliJ (JetBrains)

JLint Source Patrol (Pentest)

Java PathFinder Source Code Analysis (HP/Fortify)

SWAAT Project (OWASP) Parasoft Test/JTest (Parasoft)

VCG

Table 2.2: Static Analysis Tools

2.4 Previous Evaluations of Static Analysis Tools

This project is closely related to a paper by D.Kester, M. Mwebesa and J.S. Bradbury [32],

which analysed and tested three open-source static analysis tools (FindBugs, Chord and JLint).

The test suite included 12 programs that had bugs such as deadlocks and race conditions. The

main difference is that we have focused on more tools and we have used more test programs

and more kinds of concurrency bugs.

Another similar project is called ”Comparing Four Static Analysis Tools for Java Concur-

rency Bugs” [39]. Their research is about Coverity, Jtest, FindBugs and JLint tools. These

tools are compared by using tests that are included in a published benchmark [27]. The evalu-

ation is based on common bug patterns like deadlock and data race.

2.4. Previous Evaluations of Static Analysis Tools 11

Another study that is related to the project is from the University of Queensland by Brad

Long, Paul Strooper and Luke Wildman [34]. This project contains a theoretical analysis of

common concurrency problems like livelock, deadlock and starvation. Furthermore, there is

a comparison between static and dynamic analysis tools and an evaluation of FindBugs and

JLint. However, the project focuses on the failures of the tool and not on the domains that a

tool is helpful.

Another paper that tried to deal with the same problem is called ”Effective Static Analysis

to Find Concurrency Bugs In Java” [38]. The research was done by the IBM Group and they

managed to create a concurrency bug detector based on the Eclipse and the WALA toolkit.

Moreover, they used it on bugs, evaluated it and, finally, compared it with FindBugs. Even

though their study is far from just evaluating tools, there is a very interesting analysis of con-

currency bug patterns.

Another interesting study was published in 2008 by Shan Lu, Soyeon Park, Eunsoo Seo

and Yuanyuan Zhou [37]. Even if there are not any tools involved into the research there is a

very helpful theoretical study on bugs and their characteristics with respect to open-source bug

sources like Apache, MySQL and Mozilla.

FindBugs and PMD are involved in a paper [44] published in 2008. The study does not

focus on concurrency bugs, but evaluates the tools according to the bug patterns they are able

to detect. With respect to efficiency, the tool calculates costs and does a complete analysis of

problems as far as concern bugs and patterns.

A similar project with the previous one is ”A Comparison of Bug Finding Tools for Java” [41].

The tool that are used are five: Bandera, ESC/Java 2, FindBugs, JLint and PMD. The interest-

ing part of the evaluation of the tools according to the number of warnings is that the test suite

includes open-source projects with 30.000 lines of code and uses the time needed in order to

evaluate the performance as well. Even if it not based on concurrency errors there is a special

section, which analyses them.

”Finding Bugs is Easy” [30] includes only FindBugs and is not based on concurrency,

however the techniques and the strategies of the tool are explained and the bug patterns, that

contain concurrency, are analysed with respect to the tool.

Another paper [21] which contains only FindBugs and evaluates it with not only concur-

rency bugs is by the University of Maryland and Google Inc. The errors that were used in

the evaluation are presented theoretically and practically (with examples) and the conclusion

contains very significant points.

Two papers [26, 28] describe how the benchmark used in the evaluation process was cre-

ated and what it contains. They were able to analyse why the specific programs were included

in the benchmark and what was the experience that the developers had.

Finally, obfuscation is a very important part of the project and in order to have a guide

12 Chapter 2. Background

on how to attempt to thwart the tools a paper called ”Program Obfuscation: A Quantitative

Approach” [20] was used. There is not a tool evaluation in it, although the metrics and the

techniques like control flow and data are presented with details in a way that they are easily

understood.

Chapter 3

Tools and Configuration

3.1 Tools

3.1.1 ThreadSafe

3.1.1.1 Overview

ThreadSafe is a commercial static analysis tool for finding concurrency bugs in Java code.

ThreadSafe can find underlying intentions in design and warn the programmers about prob-

lems. The techniques [17] that the tool uses are:

Context-sensitive inter-procedural analysis ThreadSafe is able to track synchronizations on

locks across method calls, but it is also able to track references to shared data. This is

extremely significant, because more defects are found and the false positives are reduced.

Inter-class analysis There is also a tracking of the interactions of classes in order to avoid

bugs that might arise from mismatches between the assumptions of the programmers of

the different classes.

Aggregation and filtering of results Filtering is also important to reduce the number of false

positives in the results of the analysis.

Straightforward presentation of results When a bug is detected, important information is

presented to the programmer, like location and details about the defect.

ThreadSafe is capable of finding all kinds of concurrency bugs like race conditions, incon-

sistent synchronization, atomicity problems and deadlocks.

3.1.1.2 Requirements

13

14 Chapter 3. Tools and Configuration

ThreadSafe supports the following [17]:

Platforms:

• Windows XP or later

• Mac OS X 10.6 or later

• Linux (glibc 2.3 or later)

Further requirements are:

• Java SE 6 Update 10 or later

• Eclipse 3.6 or later (ThreadSafe for Eclipse)

• SonarQube 3.5 or later (ThreadSafe for SonarQube)

3.1.2 FindBugs

3.1.2.1 Overview

FindBugs is an open-source static analysis tool from the University of Maryland used for

detection of bug patterns in bytecode. Java classes are analysed and the bugs that are found

are matched with source code. Byte Code Engineering Library and ASM bytecode framework

are used in order to do this [6]. The bugs that can be detected by FindBugs can be typographic

faults, non-proper use of language or mistakes during maintenance. Even if the most common

use is as a plugin in Eclipse it can also be used as a command-line or GUI tool or as a plugin

in other platforms like NetBeans and Hudson.

The strategies of the tool can be separated in the following categories [30]:

Linear Code Scan Detectors that scan linearly bytecode.

Class Structure Detectors that just look in the structure without looking at the code.

Control Sensitive Detectors the use control flow graph to analyse methods.

Dataflow Control and Data flow graphs are used for taking both control and data into account.

The detectors that FindBugs uses belong to one or more of the categories: Single-threaded,

Thread/Synchronization correctness, Performance Issue and Security and Vulnerability to de-

tect malicious untrusted code.

As the developers of the tool claim it is possible sometimes for the tool to make mistakes

which lead to false-positives. However, the number of them has decreased as new releases are

implemented [6]. They also claim that even a project with many lines of code can be analysed

in no more than a few minutes.

3.1. Tools 15

3.1.2.2 Requirements

FindBugs is a tool that is platform independent so it can definitely be used in platforms like

GNU/Linux, Windows, and MacOS X platforms. Also, in order to use FindBugs a runtime

environment compatible with Java 2 Standard Edition or later is required.

Furthermore, at least 512 MB of memory are needed for the analysis and for larger projects

it is possible to need more.

The latest release (FindBugs 3.0.0), that is used in the specific project, requires at least Java

7 and uses ASM 5 which means that the detectors are upgraded [6] to work for the new version

of Java.

3.1.3 Chord

3.1.3.1 Overview

Chord is a relatively new open-source program analysis platform which was developed in

order to detect bugs in concurrent Java. The project was started by Mayur Naik and Alex

Aiken at Georgia Institute of Technology int 2010. Since then many people have contributed

with their applications and algorithms. At present, the source code is maintained by Mayur

Naik and Ariel Rabkin [15].

The platform is used to allow users to design and implement static and dynamic program

analyses written in Java or in Datalog.

Four kinds of static analysis methods are used by Chord:

Call-graph analysis Representation of relationships of sub-routines in the program.

Thread-escape analysis If an object can be restricted to a thread without escaping to another.

Lock analysis Analysis of locks in order to make sure that locking has been done correctly.

Alias analysis If an object is accessed by multiple threads.

The reason that the specific techniques are used is that they are good with scalability and

precision and able to help in the detection of bugs in concurrent Java [32]. However, it is

significant to determine the analysis scope to use the techniques. Analysis scope shows the

reachable methods and classes. For the specific research this happens statically, although it can

also be determined dynamically.

3.1.3.2 Requirements

16 Chapter 3. Tools and Configuration

Chord can be used on many platforms, including Windows/Cygwin, MacOS and Linux.

However, as we can see below for the specific research we used the version that exists for

Linux.

Furthermore, Joeq (Java compiler framework), Javassist (Java bytecode manipulation frame-

work) and bddbdd (BDD-based Datalog server) are required.

3.2 Test Suite

One of the most important parts of the projects was to create the test suite to evaluate the

tools as thoroughly and as fairly as possible. In order to make a clear evaluation, the suite is

divided into 3 parts. The resources that were used are the following:

Part 1a - Java Concurrency Guidelines

Java Concurrency Guidelines [35] was developed as a part of The CERT Oracle Secure

Coding Standard for Java [36]. Even though the programs are not more than 40 lines there is

a big variety of categories. The categories that are about concurrent Java and are used in the

project are Visibility and Atomicity, Locking, Thread APIs and Thread-Safety Miscella-

neous guidelines. Each one of the categories contains from 4 to 12 types of bugs and for every

type there are short examples that contain the bug(non-compliant) and ways to fix it (compli-

ant). For every type of bugs both programs (compliant and non-compliant) were used in order

to track false alarms (false positives) that the program might find. The number of the tests is

provided below:

Category Number of programs

Visibility and Atomicity 7

Locking 12

Thread APIs 6

Thread-Safety Miscellaneous 4

Total 29

Table 3.1: Java Concurrency Guidelines

Below there is an example-program of the Guidelines:

3.2. Test Suite 17

Figure 3.1: Example Locking Bug

Part 1b - Eytani et al Benchmark

The Eytani et al Benchmark [27] was developed by the IBM Haifa Research Lab in associ-

ation with the University of Haifa. The repository that was created contains 40 programs with

bugs that do not belong to many different types of bugs. However, the benchmark is helpful

as far as concerns scalability. The following table presents a categorisation according to the

number of lines of code of the programs:

Programs Lines of code

7 <100

20 100-300

6 300-500

3 500-1000

3 1000-3000

Table 3.2: Eytani Benchmark LOC

The project uses 30 of the programs which is the number of the programs that were pro-

vided. The benchmark has one more program called JOscar that contains more than 15000

lines of code, that is used in the final part of the suite.

Below there is an example-program of the benchmark as it was in Eclipse:

18 Chapter 3. Tools and Configuration

Figure 3.2: Example Benchmark Bug

Part 2 - Web (Common bugs)

Deadlock and Race Condition are the most common types of bugs in concurrent program-

ming. These tests contain programs that were found from reliable resources [40, 8, 7, 13, 18]

on the web and were used in order to evaluate how the tools work on simple examples.

Bug Number of Programs

Deadlock 6

Race Condition 7

Total 13

Table 3.3: Common Bugs

Below there is an example-program of the common bugs:

3.2. Test Suite 19

Figure 3.3: Example Common Deadlock Bug

Part 3 - Open Source Projects

This part of the test suite is concerned with how well the tools work with large projects.

So, after testing many open source projects we decided to use three of them that contain more

than 15000 lines of code. The specific projects were chosen, because they are easy to build and

contain concurrency.

Open-Source Project Version Description

k9Mail 1.0 Open-source email client based application

JOscar 0.9 Robust library for connecting to AOL and ICQ

ArgoUml 0.34 Open source UML modeling tool

Table 3.4: Open-Source Projects

ThreadSafe and FindBugs were tested on all test programs. However, Chord needs a main

method in order to analyse a program and it does not work on programs with many lines of

code. So, it could not be tested on many of our example programs. In order to summarise the

tests that were done we created the following table:

20 Chapter 3. Tools and Configuration

Title Programs Tools

Part 1a - CERT 29 ThreadSafe, FindBugs

Part 2b - Eytani Benchmark 30 ThreadSafe, FindBugs,Chord

Part 3 - Web 13 ThreadSafe, FindBugs,Chord

Part 4 - Open Source Projects 3 ThreadSafe, FindBugs

Total 75

Table 3.5: Final Test Suite table

3.3 Configuration

3.3.1 System configuration

For the project one computer system was used, which includes:

• Software

– Linux Operating System

– Ubuntu Desktop version 13.10

• Hardware

– Processor: Intel Core i5-4200U CPU @ 1.60GHz x4

– Memory: 5.4 GiB

– OS type: 64-bit

3.3.2 Tools installment and configuration

3.3.2.1 ThreadSafe

ThreadSafe is a commercial product that was used for the project with a licence that pro-

fessor Sannella was able to provide. The version that was used is ThreadSafe 1.3.1. There are

three releases that are developed:

• Command Line

• Plug-in for Eclipse

• Plug-in for SonarQube

For the first tests that were executed we used the plug-in for Eclipse. However, for most of

the tests the release for Command Line was used. It was preferred from the plug-in, because it

provided more configuration options. The analysis component is the same for both versions.

Eclipse plug-in

3.3. Configuration 21

As far as concerns the plug-in, the figure below presents the rules that can be included in

the analysis of the program. The rules that exist are more than 20 and there are details for each

one. For the testing of the tool all the rules were included.

Figure 3.4: ThreadSafe Eclipse plug-in

Command Line

For the command line tool there are more configurations that could be made. In order

to analyse a program it is important to store a txt file outside the project directory called

”project-config.properties” that contains information about the execution of ThreadSafe. There

are mandatory and optional configurations that can be made. The choices that we have are pro-

vided in the user guide of ThreadSafe [17]. They are provided below:

22 Chapter 3. Tools and Configuration

Figure 3.5: ThreadSafe Command Line Configuration

When the configuration file is ready then it is time to run ThreadSafe. For the project

all the configurations that exist were tried out. However, the configuration that was used for

the final evaluation of ThreadSafe contained four of them: projectName, sources, binaries and

outputDirectory(Figure 3.6).

Figure 3.6: ThreadSafe Configuration

Then, in order to run the tool there are two steps:

1. Move to the directory of the project

cd <project-root-directory>

2. Run the command for ThreadSafe

java -jar <installation-directory>/threadsafe.jar

The results are provided in an html file.

3.3. Configuration 23

3.3.2.2 FindBugs

FindBugs 3.0.0 is a free open-source tool that has three releases: Command Line, plug-in

for Eclipse and GUI. Even if all of them were used the project focused more on the plug-in and

the GUI. Furthermore, the analysis component is the same in all of them.

Eclipse Plug-in

The preferences that could be set for FindBugs are shown below.

Figure 3.7: FindBugs Plug-in Reporter Configuration

Some important observations from the configuration are:

• The user is able to choose the types of bugs that the tool must detect.

• There is a minimum rank of bugs to report, which is between 1(scariest) and 20(of Con-

cern).

For the project the only category that was needed was the one for multithreaded programs

and the minimum rank was set to 20 in order to detect all the bugs that exist in the program.

Furthermore, filter files can be used and plug-ins can be installed. Below there is a figure

for the tab ”Detector configuration”.

24 Chapter 3. Tools and Configuration

Figure 3.8: FindBugs Plug-in Detector Configuration

In this tab we can see that FindBugs and ThreadSafe are quite similar in configuration. For

each bug-type there are exact categories that can be chosen. Furthermore, information for each

type is provided. For the project only the types that concern concurrency bugs are used.

Graphical User Interface(GUI)

In order to analyse a program a new project has to be created:

3.3. Configuration 25

Figure 3.9: FindBugs GUI New Project

Then the program is analysed and finally the tool presents the results.

Figure 3.10: FindBugs GUI Results

Something important that should be mentioned is that FindBugs GUI can analyse programs

by their .class files. As a result, in order to use the specific interface to detect bugs in a program,

we have to compile it before.

3.3.2.3 Chord

Chord is developed to be used only from the command line. The first step in order to run

chord is to create a file called ”chord.properties” in the project direction. There are many prop-

26 Chapter 3. Tools and Configuration

erties that could be used [1]. The properties that were used for the project are the following:

Figure 3.11: Chord Properties

The chord.use.buddy property sets that the BDD library will be used in the analysis and the

chord.build.scope that the scope of the Java program will be computed.

In order to run the tool it is important to set the project directory and configure the ”chord.run.analyses”.

There are two analyses that were used: ”deadlock-analyses” and ”datarace-analyses”. Each one

of them follows a different technique in detecting errors. For every test both of them were used

in order to have as much information as possible. The command for a deadlock-analysis is the

following:

Figure 3.12: Chord Execution

Chapter 4

Evaluation of the tools

4.1 Usability

This section is about evaluating the tools according to their usability. Even this is extremely

subjective there is an attempt to make objective points about each one of them.

4.1.1 ThreadSafe

Eclipse plug-in

Figure 4.1: ThreadSafe Plug-in

The ThreadSafe plug-in for Eclipse has a lot in common with the FindBugs plug-in. Two

similarities are that both of them are able to scan just a class or a package and not only the

whole project and that the user can configure the categories that the tool must focus in each

scanning.

Furthermore, after the analysis of the desirable piece of code there are marks that present

the bugs to the user by showing the exact lines of code that the errors occur. In addition to

FindBugs, the window that presents the bugs is better organised with less, but more precise

27

28 Chapter 4. Evaluation of the tools

information.

Command Line

Figure 4.2: ThreadSafe CommandLine

Even though the plug-in for Eclipse is useful in presenting the bugs to the user, the most

valuable release for the specific tool is the command line version. The specific version works

like Chord. Even if the user must set the properties manually the output of the program presents

the bugs in a way that helps the user understand the problem.

4.1.2 FindBugs

Graphical User Interface

4.1. Usability 29

Figure 4.3: FindBugs GUI

In the GUI release of the tool the bugs are presented in two ways. On the one hand, there is

a window which shows the bugs that were detected divided in eight categories (Multithreaded

Correctness,Performance, Internationalization, etc.). On the other hand, there is another win-

dow which shows detailed information (what and where is the error exactly) about each defect.

The user of the GUI is able to configure the bugs that the analysis must focus on choosing

the appropriate categories or the bugs that affect the code the most (Rank 1-4:scariest, etc.) in

order to save time and memory.

Eclipse plug-in

Figure 4.4: FindBugs CommandLine

The plug-in is probably the most useful for someone who needs to scan large projects. The

tool can analyse a specific class or package by running the analyser only for it. There is also

the ability to configure the analysis with the same preferences that are provided by the GUI

(categories of bugs, ranking).

After the analysis ”a small bug” is used to show the presence and the exact position (line

of code) of the error. This is very useful, because despite the window that presents all the bugs

the user can see immediately the position of the bug in the code.

30 Chapter 4. Evaluation of the tools

Command Line

The release for command line is the hardest to use of the three of them. This happens

because the user must set the options of the program like arguments, home directory and effort

in order to increase or decrease precision in the detection of bugs.

4.1.3 Chord

Command Line

Figure 4.5: Chord CommandLine

Chord is released only for use in command line. As far as concerns the user, the number of

the properties that can be used in the configuration is extremely high and the user must takes

into consideration what are the needs for each analysis in order to find a way to save time, and

most important, memory. In the first tests of the tool for the specific project when a variety of

properties were used there were times that the tool crashed because of not enough memory or

needed more that 7 minutes to finish with a simple analysis.

Another observation that was made is that in order to run the tool for a project there were

properties like ”chord.run.analyses” that are crucial for the detection of bugs of types like

deadlock or race condition that were not so obvious in the documentation of the tool.

4.1.4 Summary

In order to summarize for this section of the evaluation, we could say that FindBugs is the

most easy of the three tools to use because of the well-developed GUI and the plug-in that

provides many conveniences to the user. ThreadSafe is better in presenting the bugs to the

user but the command line version is not so easily used. Finally, Chord is the hardest to be

used efficiently because of many different configurations that provides to the user that must be

chosen wisely.

4.2. Accuracy 31

4.2 Accuracy

4.2.1 1a - Java Concurrency Guidelines

As we said in chapter 3 the tests are separated in 3 parts. The first part contains ”Java Con-

currency Guidelines” [36]. There are four categories. For each test there is a brief explanation

and a degree of priority, which was assigned using a measure based on critical analysis [33].

P1 is the bug with the highest priority and P9 with the lowest. The programs that are used are

all non-compliant. However, the compliant programs were used as well. The results from them

are in section 4.2.1.2.

4.2.1.1 Results and Discussion

The first one is Visibility and Atomicity. The results for the 7 programs are the following:

Priority of Bugs ThreadSafe FindBugs

VNA00-J P8 7 7

VNA01-J P4 7 7

VNA02-J P8 7 7

VNA03-J P4 7

VNA04-J P4 7 7

VNA05-J P2 7 7

VNA06-J P8

Total 2/7 1/7

Table 4.1: Visibility and Atomicity Bugs

Discussion: In the specific section of CERT concurrency guidelines it is obvious that Thread-

Safe detects 28.5% of the bugs and FindBugs 16.6% of them. It is also important to mention

that ThreadSafe detects a medium and low-priority bug (VNA03-J and VNA06-J). Below there

is a brief explanation of what the VNA bugs are about [35]:

32 Chapter 4. Evaluation of the tools

Bug Explanation

VNA00-J Ensure visibility when accessing shared primitive variables.

VNA01-J Ensure visibility of shared references to immutable objects.

VNA02-J Ensure that compound operations on shared variables are atomic.

VNA03-J Do not assume that a group of calls to independently atomic methods is atomic.

VNA04-J Ensure that calls to chained methods are atomic.

VNA05-J Ensure atomicity when reading and writing 64-bit values.

VNA06-J Do not assume that declaring an object reference volatile guarantees.

Table 4.2: Explanation of VNA Bugs

The next category of Concurrency Guidelines is Locking. The results are in the following

table:

Priority of Bug ThreadSafe FindBugs

LCK00-J P4 7

LCK01-J P8 7

LCK02-J P8 7

LCK03-J P8 7

LCK04-J P4 7

LCK05-J P4 7 7

LCK06-J P8 7 7

LCK07-J P3 7 7

LCK08-J P9

LCK09-J P2

LCK10-J P4

LCK11-J P4 7 7

Total 4/12 7/12

Table 4.3: Locking Bugs

Discussion: In this part of the CERT Guidelines FindBugs has a much better accuracy ratio

than in the previous part. On the one hand, ThreadSafe detects less than 40% and on the other

hand, FindBugs detects 58.3%. As far as concerns priority, both tools detects bugs from all the

levels. Table 4.4 contains an explanation of the bugs in the LCK category.

4.2. Accuracy 33

Bug Explanation

LCK00-J Use private final lock objects to synchronize classes

LCK01-J Do not synchronize on objects that may be reused

LCK02-J Do not synchronize on the class object returned by getClass()

LCK03-J Do not synchronize on the intrinsic locks of high-level concurrency objects

LCK04-J Do not synchronize on a collection view if the backing collection is accessible

LCK05-J Synchronize access to static fields that can be modified by untrusted code

LCK06-J Do not use an instance lock to protect shared static data

LCK07-J Avoid deadlock by requesting and releasing locks in the same order

LCK08-J Ensure actively held locks are released on exceptional conditions

LCK09-J Do not perform operations that can block while holding a lock

LCK10-J Do not use incorrect forms of the double-checked locking idiom

LCK11-J Avoid client-side locking when classes that do not commit to their locking strategy

Table 4.4: Explanation of LCK Bugs

The next category is about Thread APIs.

Priority of Bug ThreadSafe FindBugs

THI00-J P4 7

THI01-J P4 7 7

THI02-J P2 7 7

THI03-J P2 7

THI04-J P4 7 7

THI05-J P4 7

Total 1/6 2/6

Table 4.5: Thread APIs Bugs

Discussion: The accuracy for both of the tools is less than 50%. However, it is significant to

mention that FindBugs detects a bug with a high degree of priority (THI03-J) that ThreadSafe

is not capable of finding. As table 4.6 shows, the specific bug is about invoking the wait()

method within a loop.

34 Chapter 4. Evaluation of the tools

Bug Explanation

THI00-J Do not invoke Thread.run()

THI01-J Do not invoke ThreadGroup methods

THI02-J Notify all waiting threads rather than a single thread

THI03-J Always invoke wait() and await() methods inside a loop

THI04-J Ensure that threads performing blocking operations can be terminated

THI05-J Do not use Thread.stop() to terminate threads

Table 4.6: Explanation of THI Bugs

The final part of Java Concurrency Guidelines contains several tests about Thread-Safety.

Priority of Bug ThreadSafe FindBugs

TSM00-J P4 7 7

TSM01-J P4 7

TSM02-J P2 7

TSM03-J P8 7 7

Total 2/4 0/4

Table 4.7: Thread-Safety Miscellaneous Bugs

Discussion:As the table above shows the ThreadSafe succeed 50% and FindBugs 0%. It is

also important that it detects the bug with the highest priority (TSM02-J) that is about class

initialization.

Bug Explanation

TSM00-J Do not override thread-safe methods with methods that are not thread-safe

TSM01-J Do not let the this reference escape during object construction

TSM02-J Do not use background threads during class initialization

TSM03-J Do not publish partially initialized objects

Table 4.8: Explanation of TSM Bugs

Below in the graph we can see the summary for of the Java Concurrency Guidelines.

4.2. Accuracy 35

VNA LCK THI TSM
0

10

20

30

40

50

60

28.5
33.3

16.7

50

16.6

58.3

33.3

0

Pe
rc

en
ta

ge
of

B
ug

s
D

et
ec

te
d

ThreadSafe FindBugs

Figure 4.6: Java Concurrency Guidelines Graph

Discussion: The two tools have a similar degree of accuracy in total. However, it is im-

portant to mention that there is not much overlap in the results and each one of them identifies

different types of bugs.

4.2.1.2 False Positive/Negatives

The decrease of the number of false positives and false negatives is one of the biggest

concerns of each tool’s developers. Two metrics that can present how good a static analysis

tool is, are precision and recall. Precision refers to the proportion of retrieved set that are in

fact bugs and recall refers to the fraction of all bugs that were found. In other words:

P = T P
T P+FP and

R = T P
T P+FN

In order to calculate the number of false positives, we used the compliant program of each

type of bug. The result is that none of the tools had any false positive in the CERT concurrency

guidelines. As a result P = 1 for both of the tools.

As far as concerns recall, both of the tools had false negatives to show, which are the bugs

that were not detected by the tools. On the one hand ThreadSafe had 20 false negatives and 9

True Positives and FindBugs 19 false negatives and 10 true positives. So we could say that:

Precision Recall

ThreadSafe 100 % 9/29 or 31%

FindBugs 100 % 10/29 or 34%

36 Chapter 4. Evaluation of the tools

Table 4.9: Guards Bugs

The percentages are extremely close so we cannot come to a safe conclusion. However, we

can notice that FindBugs has a higher degree of recall.

VNA LCK THI TSM

20

30

40
R

ec
al

l

ThreadSafe
FindBugs

Table 4.10: Recall Graph

Above we can see a graph that represents the recall for ThreadSafe and FindBugs. At the

beginning, ThreadSafe succeeds a higher degree of Recall, but as tests are scanned, FindBugs’s

recall increases. Finally, the two tools succeed degrees of recall with a small difference.

4.2.2 1b - Eytani Benchmark

In this part all tools are used (ThreadSafe, FindBugs and Chord).

Program Name Type of Bug [23] ThreadSafe FindBugs Chord

ABpushpop Stack Overflow 7 7 7

Account Wrong lock/no lock 7

AirlinesTickets Not-atomic 7 7

AllocationVector Weak-reality 7 7

BoundedBuffer Notify instead of NotifyAll

BubbleSort Orphaned-Thread

BubbleSort2 Initialization-sleep pattern 7

BufWriter Wrong Lock/No lock 7

BuggyProgram Non-atomic, wrong lock 7 7

Critical Non-atomic 7 7 7

4.2. Accuracy 37

DCL Double Checked Locking

Deadlock Deadlock 7

DeadlockException Deadlock 7 7

FileWriter Non-atomic 7 7

FtpServer Liveness

GarageManager Deadlock 7

HierarchyExample Race Condition 7

JCuteExamples Race Condition

LinkedList Non-atomic 7 7

Liveness Liveness 7 7

Lottery Wrong lock/no lock 7

Manager Non-atomic 7

MergeSort Non-atomic 7

MergeSortBug Non-atomic 7 7 7

PingPong Non-atomic 7 7 7

Piper Wait not in loop 7

ProductConsumer Orphaned-Thread 7

Shop Sleep,weak reality 7

SunsAccount Non-atomic 7 7

XtangoAnimator Deadlock 7 7(NoMem)

Total 13/30 15/30 21/30

Table 4.12: IBM benchmark Bugs

Discussion: First of all it is important to mention that Chord was not able to detect the bugs

for ”XtangoAnimator”, because it could not finish because of ”Out of Memory” problem of the

system. This shows that Chord can be used only for programs with not many lines of code.It is

worth mentioning that the specific program contains 2088 lines of code.

It is obvious that Chord was the tool that found most of the bugs. Although, as we can

see ThreadSafe is good on finding bugs that belong to the Wrong Lock/No Lock category and

FindBugs is good non-atomic errors. However, as a conclusion we could say that Chord is

really good and the other two are almost similar with accuracy around 43 to 50%.

38 Chapter 4. Evaluation of the tools

4.2.3 Part 2 - Web

Part 2 is about testing simple programs with the two most common types of bugs (deadlock

and race condition). For this part all the tools are used (ThreadSafe, FindBugs and Chord). In

the tables below we can see the results for both types.

ThreadSafe FindBugs Chord

Deadlock1 7

Deadlock2 7

Deadlock3 7

Deadlock4 7 7

Deadlock5

Deadlock6 7 7

Total 4/6 4/6 3/6

Table 4.13: Deadlocks Bugs

ThreadSafe FindBugs Chord

RaceCondition1 7 7

RaceCondition2 7 7

RaceCondition3 7

RaceCondition4 7

RaceCondition5 7 7

RaceCondition6 7 7

RaceCondition7 7

Total 4/7 1/7 6/7

Table 4.14: Race Condition Bugs

Discussion: On the 6 programs with deadlocks that are used, ThreadSafe and FindBugs

detect 66.7% of the bugs and Chord detects one less so 50% of them. However, there is not

any program that all the tools have the same results (all or none of them detect the same bug).

This shows that even though they are all static analysis tools the differences between them and

especially the way they analyse code are crucial.

ThreadSafe detects 57% of the race conditions and FindBugs only 14%. Although, Chord

is very good at this part of testing and succeeded in finding 85% of them.

From the results we can say that Chord had a very good degree of accuracy (9/13). Further-

more, ThreadSafe’s accuracy was also high (8/13). However, FindBugs’s accuracy was poor.

4.2. Accuracy 39

Below there is a graph to represent the results.

Deadlock Race Condition
0

20

40

60

80

66.7

57

66.7

14

50

85

Pe
rc

en
ta

ge
of

B
ug

s
D

et
ec

te
d

ThreadSafe FindBugs Chord

Figure 4.7: Deadlock and Race condition graph

4.2.4 Part 3 - Open-Source Projects

The final part is about testing on very large open source projects. In this part ThreadSafe

and FindBugs are used. Chord is not used because after several attempts to analyse the projects

there were ”run out of memory” problems.

It would be pointless to just check if the tools find bugs or not, because the projects have so

many lines of code that every one of them will detect bugs. Instead, we decided to count how

many bugs each tool detects and identify which one finds the most important ones.

ThreadSafe FindBugs

K9Mail 28 23

JOscar 58 16

ArgoUml 31 14

Table 4.15: Open Source Projects Bugs

Discussion: As far as concerns K9Mail, ThreadSafe found 28 bugs and FindBugs found

23 with most of them being inconsistent synchronizations of accesses to a field. The results

were quite similar and they both needed 15 to 20 seconds to analyse the whole project.

However, in JOscar the results had important differences. First of all as we can see Thread-

Safe found more bugs than FindBugs. As a matter of fact, ThreadSafe identified 49 inconsistent

40 Chapter 4. Evaluation of the tools

synchronizations in addition to FindBugs, which found less than 5. We can say that ThreadSafe

works better on large projects and is able to detect bugs that other tools cannot.

Finally, in ArgoUml ThreadSafe detects 31 bugs and FindBugs 14. Both of them detect

same categories of bugs (for example inconsistent synchronizations, unsafe operations and

non-atomic uses), but ThreadSafe finds more bugs in each category than FindBugs.

4.3 Performance

4.3.1 Time

In order to check the performance of the tools according to the time they need we decided

to use the benchmark. Some assumptions that were made are:

• In order to make a fair comparison the command line release was used for all the tools.

• The times that are used are the average score between 3 execution for each program.

• The lines of code for each program were counted by a tool called EclipseMetrics [4].

• An observation that was made was that FindBugs need more time in the first executions

and that after a few it needs less time. With respect to fairness, the times that were used

were after 5 executions.

In order to prove the last point the times of 10 executions of FindBugs are provided for

”ABpushpop” program. As we can see, there is a convergence after the fifth execution of the

program.

Executions 1 2 3 4 5 6 7 8 9 10

Time in Seconds 5.70 1.82 1.10 0.84 0.77 0.69 0.65 0.56 0.58 0.69

Table 4.17: FindBugs Execution Times

As far as concerns ThreadSafe, it needs two executions in order to reach convergence.

Below we can see the times of ThreadSafe for the same program:

Executions 1 2 3 4 5 6 7 8 9 10

Time in Seconds 4.73 1.45 1.42 1.4 1.47 1.46 1.38 1.4 1.44 1.47

Table 4.19: ThreadSafe Execution Times

4.3. Performance 41

2 4 6 8 10

2

4

6

Executions
Ti

m
e

in
se

co
nd

s

FindBugs
ThreadSafe

Table 4.20: FindBugs and ThreadSafe Execution Times Graph

For Chord the first time refers to datarace-analyses and the second to deadlock-analyses.

LOC means Lines Of Code, TS means ThreadSade and FB means FindBugs. The following

table shows the information that will be needed:

Program Name LOC TS FB Chord

ABpushpop 317 1.44s 0.71s 57s / 53s

Account 155 1.15s 0.29s 1m 31s / 1m 34s

AirlinesTickets 61 1.03s 0.56s 1m 37s / 1m 33s

AllocationVector 286 1.23s 0.26s 1m 6s / 55s

BoundedBuffer 536 1.48s 0.48s 1m 7s / 59s

BubbleSort 236 1.34s 0.29s 1m 34s / 1m 29s

BubbleSort2 130 1.10s 0.20s 1m 14s / 1m 19s

BufWriter 255 1.27s 0.25s 1m 36s /1m 30s

BuggyProgram 359 1.35s 0.46s 1m 33s / 1m 31s

Critical 73 1.12s 0.18s 1m 4s / 59s

DCL 138 1.17s 0.24s 1m 35s / 1m 32s

Deadlock 95 1.2s 0.34s 1m 41s / 4m 44s

DeadlockException 149 1.34s 0.43s 1m 40s / 1m 38s

FileWriter 311 1.2s 0.28s 1m 42s / 1m 40s

FtpServer 1200 4.2s 4.08s 1m 44s / 5m 32s

GarageManager 584 1.44s 0.46s 1m 43s / 5m 48s

HierarchyExample 88 1.19s 0.46s 59s / 51s

JCuteExamples 280 2.7s 3.02s 1m 21s / 1m 22s

LinkedList 416 1.36s 0.24s 1m 31s /1m 30s

Liveness 161 1.18s 0.26s 1m 6s / 54s

42 Chapter 4. Evaluation of the tools

Lottery 359 1.72s 1.02s 1m27s / 1m 26s

Manager 236 1.34s 0.26s 1m 6s / 57s

MergeSort 375 1.36s 0.8s 1m 30s / 4m 45s

MergeSortBug 275 1.3s 0.40s 1m 31s / 1m30s

PingPong 126 1.25s 0.26s 52s / 59s

Piper 116 1.35s 0.26s 1m 28s / 4m 35s

ProductConsumer 203 1.21s 0.4s 1m 28s / 4m 51s

Shop 273 1.48s 0.26s 1m 5s / 56s

SunsAccount 66 1.10s 0.24s 1m 8s / 59s

XtangoAnimator 2088 2.5s 1.37s Out of Memory

Table 4.22: Time Performance Table

100 200 300 400 500 600
0

1

2

Lines of code

Ti
m

e
in

se
co

nd
s

ThreadSafe
FindBugs

Table 4.23: Graph for ThreadSafe and FindBugs for 60 to 600 lines of code

100 200 300 400 500 600

60

70

80

90

100

Lines of code

Ti
m

e
in

se
co

nd
s

Datarace
Deadlock

Table 4.24: Graph for ThreadSafe and FindBugs for 60 to 600 lines of code for Chord

4.3. Performance 43

Discussion: From the table and the graphs above we can make some points for the time

performance of the tools. First of all, it is obvious that ThreadSafe and FindBugs can analyse

programs with many lines of code in a few seconds. FindBugs is a little faster, but we should

mention that it needs to run a few times before it has the best possible time performance.

Furthermore, there are occasions, where a program with less lines than another needs more

time (e.g. ”Deadlock” with 95 lines of code needs 0.34 seconds and ”FileWriter” with 311

lines needs 0.28 seconds). This proves that the besides the lines of code, complexity is a very

important parameter in the scanning of a program.

In addition to these two, Chord has a worst time performance and needs more than a minute

even for programs that have less than 150 lines of code. The two analyses that were used in

Chord (deadlock and datarace analysis) generally need same amount of time for the same

program. However, there are many ups and downs, which proves that complexity is also very

important for each analysis. Furthermore, there are occasions, where deadlock-analyses needs

much more time than datarace. For example, in ”Piper” the time for datarace is 1 minute and

28 seconds and deadlock 4 minutes and 31 seconds. Outliers like this are not included in the

graphs because they are special cases and one of them is examined below.

260 270 280 290 300 310 320 330 340 350

Deadlock

FtpServer

Garage

MergeSort

Piper

Product

304

332

348

265

295

290

Time in seconds

Table 4.25: Chord Deadlock-analysis Outliers

In ”Piper” the analysis that identifies the bug is deadlock-analyses. As we can see above it

needs more than 4 minutes. If we examine the output of Chord we can see that the traces and

the details of the bugs are contained in an xml file that is more than 5 MB. As a result, we can

say that the number of the lines of code is a very important parameter, but the complexity and

the time needed to produce the output are significant as well.

The graphs above show us how the three tools work on not very large projects that do not

44 Chapter 4. Evaluation of the tools

exceed 1200 lines of code. As far as concerns the open source projects the results are below:

Project Name LOC ThreadSafe FindBugs

JOscar 17.000 5.6s 7.09s

K9Mail >30.000 12.62s 19.62s

ArgoUml >100.000 205s 255s

Table 4.26: Open Source Projects Time Performance

1.6 1.8 2 2.2 2.4 2.6 2.8 3

·104

10

15

20

Lines of code

Ti
m

e
in

se
co

nd
s

ThreadSafe
FindBugs

Table 4.27: Graph for ThreadSafe and FindBugs for JOscar and K9Mail

As the number of lines is low (less than 600 lines), ThreadSafe and FindBugs need less

than two seconds to finish scanning. Even though FindBugs needs less time than ThreadSafe,

as programs become larger FindBugs needs more time than FindBugs. In other words, as the

number of lines of code increases FindBugs has a more rapid increase in time needed than

ThreadSafe. For both benchmark and large open source projects, FindBugs has a more wide

range of time (from 0.28 to 20 seconds) than ThreadSafe (1 to 12.62 seconds).

Furthermore, in even larger projects (like ArgoUml) FindBugs is still slower than Thread-

Safe.

4.3.2 Bug representation

In order to evaluate the tools for the way they represent the bugs we will examine the output

for the same test. The program that we will use is ”DCL” from the Eytani benchmark. The

type of the bug in the specific piece of code is double-checked locking.

4.3. Performance 45

ThreadSafe (CLI)

First of all we will examine the output of ThreadSafe (CLI). Below there are two figures

with the results.

Figure 4.8: ThreadSafe Command Line Results Representation 1

Figure 4.9: ThreadSafe Command Line Results Representation 2

Discussion:As we can see, the output is clear about the bugs with enough information that helps

the user find and fix the bugs. There are 3 main windows in the html file. Firstly, there is a

upper left window where there is a list with the program’s bugs that can be presented according

to their type, severity, class or category. Secondly, in the down left window information about

the bug is provided (type, category and severity). Furthermore, unsynchronized read and writes

are presented with the lines of code they occur. Finally, in the right window the code of the

program is given in order to help the user identify the bug.

Furthermore, for bugs that come from inconsistent synchronization ThreadSafe provides

additional information in a special section called ”Accesses”. Below there is n example for a

race condition bug:

46 Chapter 4. Evaluation of the tools

Figure 4.10: ThreadSafe Accesses

As we can see, for each method that there is no consistent synchronization there is infor-

mation provided for where exactly in the program a read or a write happens.

Chord (CLI)

Below there is a figure for the output of the tool for a datarace analyses.

Figure 4.11: Chord Results Representation

Discussion: As we can see the output of Chord is not exactly what the other tools provide.

After a datarace-analysis the report presents the traces of the bug. This means that the user can

see where exactly an unsynchronised ”read” or ”write” happens where the error arises. We can

clearly see that Chord is developed for experienced developers that can examine the details,

track the defect and fix the problem. A suggestion for improvement is that in the output folder

there could be a file that lists the bugs in a way that inexperienced developers can understand

and fix.

4.3. Performance 47

FindBugs (GUI - Eclipse plug-in)

The two figures below present FindBugs’s output for the graphical user interface and the

plug-in.

Figure 4.12: FindBugs Plug-in Results Representation

Figure 4.13: FindBugs GUI Results Representation

Discussion: The GUI has a lot in common with the html output of ThreadSafe. The user is able

to see the bugs that are identified and details for each one of them. However, a disadvantage

is that, even if the line of code that the bug occurs is given, the tool does not have a feature to

show code in order to help the developer find where the problem is exactly.

Summary

In order to summarize, even if the Eclipse plug-ins (ThreadSafe and FindBugs) are the

easiest to use, ThreadSafe CLI is the tool that provides the most clear and precise information

needed for the user. As far as concerns FindBugs, the GUI and the plug-in provide the same

information, but not as clear as ThreadSafe. The interface can be improved by implementing

features like ways to fix a bug.

The hardest tool to use is Chord, because when the developer needs to track and fix a bug

he must follow some specific steps. First, the user must choose the appropriate analysis for

48 Chapter 4. Evaluation of the tools

the program and the bugs that may exist. Secondly, it is important to examine the traces and

locate where the bugs is exactly and what are the required fixes and, finally, the repair must

take place taking into consideration all the previous steps. An improvement that can be done is

an implementation that produces an html or xml page with more clear results.

4.4 Obfuscation

Obfuscation is the act of turning source code, using several transformations, to a form that

a human cannot easily understand [20]. The main reason that obfuscation is used is to provide

security in order to prevent attacks like tampering [24].

Obfuscation includes [9]:

Name Obfuscation Renaming methods, classes etc.

Code and Data Flow Obfuscation Alternative logic

Other String Encryption, Unnecessary Code Injection, Remove information from debugging

Obfuscation is used in order to show how easily a tool can be thwarted and not detect a bug

that was detected in the original program. The idea is to use a number of patterns in a subset

of the programs and identify when exactly each tool does not detect mistakes in the program

(false negatives) [42].

From the test suite we used the Java Concurrency Guidelines, Common Bugs and the fol-

lowing 10 programs from the benchmark:

Program Name Type of Bugs Tool that detected the bugs

BoundedBuffer Notify instead of NotifyAll ThreadSafe, FindBugs, Chord

BubbleSort Orphaned-Thread ThreadSafe, FindBugs, Chord

BuggyProgram Wrong Lock ThreadSafe

DCL Double-Checked Locking ThreadSafe, FindBugs, Chord

FileWriter Non-atomic FindBugs

FtpServer Liveness ThreadSafe, FindBugs, Chord

JCuteExamples Race Condition ThreadSafe, FindBugs, Chord

Manager Non-atomic ThreadSafe, Chord

Piper Wait not in loop FindBugs, Chord

ProductConsumer Orphaned-Thread Chord

Table 4.29: Benchmark Obfuscated Programs

4.4. Obfuscation 49

In order to choose the programs from the benchmark, we decided to include the programs

that contain bugs that were detected by every tool. However, in order to have a more complete

subset of the benchmark, we included five more that help us have a variety of types of bugs.

Pattern 1: Call the buggy part of the program through another method

For this pattern the idea is to create another method and call the buggy part from it. Pattern

1 increases the degree of the complexity of the tool’s analysis by adding one more method to

call. Below there is an example of calling the buggy part through another method:

Figure 4.14: Obfuscation Pattern 1 Example

Java Concurrency Guidelines-Visibility and Atomicity

ThreadSafe and FindBugs were tested in the VNA part of the CERT Guidelines [35]. As we

can see in section 4.2 only ThreadSafe was able to detect 2 of the bugs. After the obfuscation

ThreadSafe was still able to detect them. FindBugs detected only one bug, but after applying

pattern 1 it was not able to detect it.

Java Concurrency Guidelines-Locking

In the LCK part ThreadSafe was again able to detect the bugs that it could detect before.

However, FindBugs did not detect the three following bugs:

Bug Summary

LCK00-J Use private final lock objects when interacting with untrusted code

LCK08-J Ensure actively held locks are released on exceptional conditions

LCK09-J Do not perform operations that can block while holding a lock

Table 4.30: Finbugs Results on LCK after Obfuscation with Pattern 1

Java Concurrency Guidelines-Thread-APIs

50 Chapter 4. Evaluation of the tools

In this part of the Guidelines after the obfuscation both of the tools were still able to detect

the bug (one for ThreadSafe and two for FindBugs).

Java Concurrency Guidelines-Thread-Safety Miscellaneous

There was only two bugs (TSM02-J and TSM02-J) detected (out of four) for ThreadSafe.

After calling the buggy part through another method it was still able to detect the bugs.

Eytani Benchmark

In order to check how the tools work in obfuscated programs of the benchmark, as men-

tioned before we used some of the programs.

Was it Thwarted ?

Program Name ThreadSafe FindBugs Chord

BoundedBuffer 7 7 7

BubbleSort 7 7

BuggyProgram 7 ———- ———-

DCL 7 7 7

FileWriter ———- ———-

FtpServer 7 7 7

JCuteExamples 7 7 7

Manager 7 ———- 7

Piper ———- 7 7

ProductConsumer ———- ———- 7

Table 4.31: Benchmark Pattern 1 Results

As a result, the specific pattern was not able to thwart ThreadSafe and Chord. However, Find-

Bugs had again false-negatives (bugs not found).

Common Bugs

In common bugs the accuracy for deadlocks was 66% for both ThreadSafe and Finbugs and

for Chord it was 50%. After the obfuscation ThreadSafe was still able to detect the bugs, but

FindBugs detected only 25% of the 4 bugs that it detected before the obfuscation. Furthermore,

Chord was still able to detect the bugs. This shows the analyses that Chord does is extremely

powerful and it is difficult to thwart the tool.

As far as concerns the race conditions, even if ThreadSafe detected the bugs, FindBugs

did not detect the one bug that it was able to detect before. Chord had a very good degree of

accuracy in common race conditions (85%), which remained the same after obfuscating the

programs.

4.4. Obfuscation 51

Pattern 2 - Include the buggy part into if-else statement

For this pattern the idea is to insert the buggy part of the program into an if-else statement.

The buggy part will be executed in both blocks (if and else). Below there is an example of the

technique:

Figure 4.15: Obfuscation Method 2 Example

Discussion of the example: As we can see from the example, the buggy part(try-catch) is in-

cluded in an if-else statement. Even if the bug is the same, it exists two times, so the tool must

identify both of them.

Java Concurrency Guidelines-Visibility and Atomicity

In the fist category of the guidelines (Visibility and Atomicity), ThreadSafe was able to de-

tect 2/6 bugs. After the obfuscation with the specific method ThreadSafe was still able to detect

the bug. Furthermore, FindBugs could also detect the bug it could detect from the beginning.

Java Concurrency Guidelines-Locking

For the specific type of bug ThreadSafe had 33.3 % and FindBugs 58.3 %. After the code

obfuscation by using method 2, ThreadSafe had the same accuracy. However, FindBugs was

thwarted in 4 bugs out of 7 it was able to detect before. The bugs that it was unable to detect

are the following:

Bug Summary

LCK00-J Use private final lock objects when interacting with untrusted code

LCK01-J Do not synchronize on objects that may be reused

LCK08-J Ensure actively held locks are released on exceptional conditions

LCK09-J Do not perform operations that can block while holding a lock

52 Chapter 4. Evaluation of the tools

Table 4.32: FindBugs Results on LCK after Obfuscation with Pattern 2

Java Concurrency Guidelines-Thread-APIs

In addition to pattern 1, FindBugs was thwarted for both of the bugs that it was able to

detect before.

Bug Summary

THI00-J Do not invoke Thread.run()

THI03-J Always invoke wait() and await() methods inside a loop

Table 4.33: FindBugs Results on THI after Obfuscation with Pattern 2

Java Concurrency Guidelines-Thread-Safety Miscellaneous

In TSM there was two bugs detected by ThreadSafe which are TSM01-J (Do not let the

this reference escape during object construction) and TSM02-J (Do not use background threads

during class initialization). After including the buggy part in an if-else statement the tool was

still able to detect it.

Eytani Benchmark

In order to check how the tools work in obfuscated programs of the benchmark, as men-

tioned before we used some of the programs.

Was it Thwarted ?

Program Name ThreadSafe FindBugs Chord

BoundedBuffer 7

BubbleSort 7

BuggyProgram ———- ———-

DCL 7 7

FileWriter ———- 7 ———-

FtpServer 7 7

JCuteExamples 7 7

Manager 7 ———- 7

Piper ———- 7

ProductConsumer ———- ———- 7

Table 4.34: Benchmark Pattern Results

As a result, pattern 2 succeed to thwart ThreadSafe for ”BuggyProgram”. However, Chord was

able to detect the bugs after the obfuscation and FindBugs could detect one of them.

Common Bugs

4.5. Summary 53

In deadlocks, another time ThreadSafe and Chord were not thwarted. However, FindBugs

couldn’t detect any of the bugs that it was able to detect before obfuscation.

As far as concerns race conditions, FindBugs could not detect the bug in both blocks of

code (if and else blocks) in the one program it could before. ThreadSafe and Chord could not

be thwarted.

4.5 Summary

In order to summarize the 4.4 section we could make some very helpful observations.

First of all, as we can see FindBugs was thwarted in many occasions which shows as that it

cannot be trusted for complicated programs, where bugs might be hidden within dead code

or statements and method calls. ThreadSafe had a good degree of accuracy as it was only

thwarted in one program of the benchmark. Finally, with the specific test suite and the specific

patterns it was impossible to thwart Chord as it could detect all the bugs in the programs that

were obfuscated. The results are presented in the below table. The number correspond to the

obfuscated programs that managed to thwart the tools.

Pattern 1 Pattern 2

ThreadSafe FindBugs Chord ThreadSafe FindBugs Chord

Guidelines 0/9 4/10 ——– 0/9 6/10 ——–

Common Bugs 0/8 4/5 0/9 0/8 5/5 0/9

Benchmark 0/7 2/7 0/8 3/7 6/7 0/8

Summary 0/24 9/22 0/17 3/24 17/22 0/17

Table 4.35: Obfuscation Results

Chapter 5

Conclusion and future work

5.1 Conclusion

In this project, we described the process of finding bugs in concurrent Java by static analysis

tools. We used a commercial (ThreadSafe) and two free open-source tools (FindBugs and

Chord). In order to evaluate and compare them, we used a test suite that contains more than

70 programs coming from the CERT Concurrency Guidelines; a benchmark developed mainly

from the IBM Research Lab with the support of other open source web communities. Except

for Chord, the other two tools provide several functionalities (GUI, Command Line and Plug-

ins). Even though we worked with each of them, we focused on the GUI and Command Line

versions for most of the tests. The used test suite is published for future experiments on the

homepage of Professor Don Sannella: http://homepages.inf.ed.ac.uk/dts/other-students.html

As far as concerns static analysis tools, generally they are at a good level in finding con-

currency bugs. However, even if in small programs they are able to detect most of the bugs, in

large projects they have false negatives and sometimes the bugs are lost in false positives.

Moreover, we focused on evaluating the mentioned tools in four categories (Usability, Ac-

curacy, Performance and Obfuscation). As far as concern usability, FindBugs and ThreadSafe

have quite a lot of similarities. We consider FindBugs to be slightly more useful because of the

GUI, but ThreadSafe is better in the way the bugs are presented to the user. Finally, we believe

that Chord is the least useful; because of the many configurations the user must set for every

scan.

With respect to accuracy, for tests on which Chord could be used, the degree of its accuracy

is dominant over the others. Thus, it is significant, that it cannot be tested on every program,

because not all of them are complete (with main method) and because Chord does not scale to

use with large programs. The other two have an almost identical accuracy, but it is significant

to mention that there is not much overlap in the results and the two tools (ThreadSafe and

55

56 Chapter 5. Conclusion and future work

FindBugs) are able to detect different bugs.

As far as concerns performance, there are some important observations that were made.

Firstly, it was not possible to include Chord in large-project testing, because it is not able

to run programs with thousands lines of code. In small programs (60 to 600 lines of code)

ThreadSafe and FindBugs needed only a few seconds to scan them, on contrast to Chord that

needed from 50 seconds to 5 minutes. Even though FindBugs needed a smaller amount of time

than ThreadSafe, in large-scale projects (more than 15000 lines of code) ThreadSafe needed

less time than FindBugs.

The final way to evaluate the tools was obfuscation. Two simple methods were used in

order to change the control or data flow of a program and attempt to thwart the tools. Find-

Bugs was extremely easy to thwart and there were many bugs that it was not able to detect.

ThreadSafe was a little stronger, as it was more difficult to hide bugs from it. Finally, it was

not possible with the specific methods used to thwart Chord which makes it the most powerful

in this respect.

Summarising, we could say that Chord is the best tool to use for complete small programs,

even if it needs more time than the other two and it is not extremely usable. The other two

tools have an almost similar behaviour with ThreadSafe being more precise and powerful as

the project becomes larger.

5.2 Future Work

There were several ideas that came to mind while the project was in progress. Something

important is the implementation of a benchmark. The IBM benchmark is useful but it should

be extended to be more applicable for scalability and size. On the one hand, scalability can be

tested by including programs with different sizes, which are measured with lines of code. On

the other hand size can be tested by including large-scale projects with more than 30.000 lines

of code.

From the three tools we used, we believe that Chord was the one that needed more time to

get familiar with and to understand how it exactly works. A project could be entirely focused

on Chord and it techniques of analyses. Furthermore, the differences between the two types of

analysis can be pointed and an improvement in order to decrease the time for deadlock-analysis

can be suggested.

Another aspect of the project was obfuscation. Obfuscation is a very special act in pro-

gramming that is used mostly for security reasons. A project about obfuscation can focus on

more patterns than the two that were used in the project and on the combination of them in

order to attempt to thwart static analysis tools.

5.2. Future Work 57

Finally, the novelty of our work comes partly from the fact that the specific three tools have

not been compared before. However, as we can see in the section ”2.4 Previous Evaluations of

Static Analysis Tools” there are many studies about comparisons of static analysis tools. The

exact same ideas of the specific project could be used for the evaluation of Dynamic Analysis

tools, like Parasoft JTest, Purify and Avalanche.

Bibliography

[1] Chord @ georgia tech [online] 2013 , http://pag-www.gtisc.gatech.edu/chord/.

[2] Concepts of concurrency, lecture 1: Introduction, chris greenhalgh,[online] 2007, school
of computer science, http://www.cs.nott.ac.uk/.

[3] Concurrent programming actors and coordination abstractions,[online] march 2007,
http://www.cs.rpi.edu/academics/courses/spring07/dci.

[4] Eclipsemetrics @ state of flow [online] 2006, http://www.stateofflow.com
/projects/16/eclipsemetrics.

[5] Efficiency matters @ jenkov.com [online], http://www.jenkov.com/.

[6] Findbugs - find bugs in java programs. findbugs. [online] 21 december 2011
http://findbugs.sourceforge.net/.

[7] How to do in java [online] 2014, http://howtodoinjava.com/.

[8] Java examples @ java2notice [online] 2014, http://www.java2novice.com/.

[9] Java obfuscation tutorial with zelix klassmaster @ netspi [online] july 2013
, https://www.netspi.com/blog/entryid/184/java-obfuscation-tutorial-with-zelix-
klassmaster.

[10] Microsoft support @ microsoft. [online] june 2012 http://support.microsoft.com
/kb/317723.

[11] Openstax cnx @ cnx. [online] http://www.cnx.org/.

[12] Oracle [online], http://www.oracle.com/.

[13] Oreilly examples [online], http://examples.oreilly.com/9781565923713/.

[14] Palizine information security intelligence @ plynt [online]
http://palizine.plynt.com/issues/2005oct/hiding-control-flows/.

[15] Program analysis group @ georgia tech [online] http://pag.gatech.edu/home.

[16] Static code analysis @ owasp [online], https://www.owasp.org.

[17] Threadsafe @ contemplate [online] http://www.contemplateltd.com/threadsafe.

[18] Tutorials point [online] 2014, http://www.tutorialspoint.com/java/.

[19] What is dynamic code analysis @ stackoverflow [online] september 2008,
http://stackoverflow.com/questions/49937/what-is-dynamic-code-analysis.

59

60 Bibliography

[20] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D. Bosschere, and B. Preneel. Pro-
gram obfuscation: A quantitative approach, 2007.

[21] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou. Evaluating static anal-
ysis defect warnings on production software. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, PASTE
’07, pages 1–8, New York, NY, USA, 2007. ACM.

[22] T. Ball. The concept of dynamic analysis. In Software EngineeringESEC/FSE99, pages
216–234. Springer, 1999.

[23] J. S. Bradbury, I. Segall, E. Farchi, K. Jalbert, and D. Kelk. Using combinatorial bench-
mark construction to improve the assessment of concurrency bug detection tools. In Pro-
ceedings of the 2012 Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging, pages 25–35. ACM, 2012.

[24] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations,
1997.

[25] N. Davis. Secure software development life cycle processes: A technology scouting
report. Technical report, DTIC Document, 2005.

[26] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a framework and benchmark
for testing tools for multi-threaded programs. Concurrency and Computation: Practice
& Experience, 19(3):267–279, 2006.

[27] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a framework and benchmark
for testing tools for multi-threaded programs. Concurrency and Computation: Practice
& Experience, 19(3):267–279, 2006.

[28] Y. Eytani, R. Tzoref, and S. Ur. Experience with a concurrency bugs benchmark. In
Proceedings of the 2008 IEEE International Conference on Software Testing Verification
and Validation Workshop, ICSTW ’08, pages 379–384, Washington, DC, USA, 2008.
IEEE Computer Society.

[29] K. Havelund, S. D. Stoller, and S. Ur. Benchmark and framework for encouraging re-
search on multi-threaded testing tools. In Parallel and Distributed Processing Sympo-
sium, 2003. Proceedings. International, pages 8–pp. IEEE, 2003.

[30] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106, Dec.
2004.

[31] M. Ishrat, M. Saxena, and M. Alamgir. Comparison of static and dynamic analysis for
runtime monitoring. International Journal of Computer Science & Communication Net-
works, 2(5), 2012.

[32] D. Kester, M. Mwebesa, and J. Bradbury. How good is static analysis at finding con-
currency bugs? In Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE
Working Conference on, pages 115–124, Sept 2010.

[33] S. A. Limited, I. E. Commission, et al. Analysis Techniques for System Reliability: Pro-
cedure for Failure Mode and Effects Analysis (FMEA). Standards Australia, 2008.

Bibliography 61

[34] B. Long, P. Strooper, and L. Wildman. A method for verifying concurrent java compo-
nents based on an analysis of concurrency failures: Research articles. Concurr. Comput.
: Pract. Exper., 19(3):281–294, Mar. 2007.

[35] F. Long. Java Concurrency Guidelines. Technical report. Carnegie Mellon University,
Software Engineering Institute, 2010.

[36] F. Long, C.-M. U. C. C. Center, D. Mohindra, and R. Seacord. The CERT Oracle Secure
Coding Standard for Java. SEI series in software engineering. Addison-Wesley, 2011.

[37] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII, pages 329–339, New York, NY, USA, 2008. ACM.

[38] Z. D. Luo, L. Hillis, R. Das, and Y. Qi. Effective static analysis to find concurrency bugs
in java. In Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE Working
Conference on, pages 135–144, Sept 2010.

[39] M. A. A. Mamun, A. Khanam, H. Grahn, and R. Feldt. Comparing four static analysis
tools for java concurrency bugs. In Proc. of the Third Swedish Workshop on Multi-Core
Computing (MCC-10), pages 143–146, 2010.

[40] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in
Practice. Addison-Wesley Professional, 2006.

[41] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding tools for java.
In Proceedings of the 15th International Symposium on Software Reliability Engineering,
ISSRE ’04, pages 245–256, Washington, DC, USA, 2004. IEEE Computer Society.

[42] S. Schrittwieser and S. Katzenbeisser. Code obfuscation against static and dynamic re-
verse engineering. In Proceedings of the 13th International Conference on Information
Hiding, IH’11, pages 270–284, Berlin, Heidelberg, 2011. Springer-Verlag.

[43] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Principles, 7TH ED. Wiley
student edition. Wiley India Pvt. Limited, 2006.

[44] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb. An evaluation of
two bug pattern tools for java. In Software Testing, Verification, and Validation, 2008 1st
International Conference on, pages 248–257, April 2008.

	Introduction
	Overview
	Motivation
	Approach
	Thesis outline

	Background
	Concurrent programming
	Overview
	Advantages and Disadvantages
	Problems in concurrent programming

	Code analysis
	Static analysis
	Dynamic analysis
	Static analysis vs Dynamic Analysis
	False Positives and False Negatives

	Static analysis tools
	Previous Evaluations of Static Analysis Tools

	Tools and Configuration
	Tools
	ThreadSafe
	Overview
	Requirements

	FindBugs
	Overview
	Requirements

	Chord
	Overview
	Requirements

	Test Suite
	Configuration
	System configuration
	Tools installment and configuration
	ThreadSafe
	FindBugs
	Chord

	Evaluation of the tools
	Usability
	ThreadSafe
	FindBugs
	Chord
	Summary

	Accuracy
	1a - Java Concurrency Guidelines
	Results and Discussion
	False Positive/Negatives

	1b - Eytani Benchmark
	Part 2 - Web
	Part 3 - Open-Source Projects

	Performance
	Time
	Bug representation

	Obfuscation
	Summary

	Conclusion and future work
	Conclusion
	Future Work

	Bibliography

