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Abstract: Most programming languages contain constructs producing a
computational effect as well as yielding a result. These effects include assigning
to mutable variables, raising exceptions and performing input and output. The
incorrect implementation and use of these effects introduce a class of errors such
as failing to catch an exception or performing I/O to an inappropriate device. An
effect system is an augmented type system which contains additional information
about computational effects. These effect systems can be used to statically anal-
yse a program. The results of this analysis may be used to ensure the absence
of a class of errors related to a particular computational effect or to suggest code
optimisations.

In this project an effect system is designed, implemented and evaluated for a
single computational effect, raising and handling exceptions. The framework of
this system is used to create a system considering a different computational ef-
fect, allocating, assigning and dereferencing mutable variables. These two effect
systems are then combined to produce a system which can analyse both classes
of computational effect.
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1. Introduction

1.1 Overview

Almost all modern programming languages contain statements producing com-
putational effects as well as possibly yielding a result. Examples of such effects
include assigning to mutable variables, performing input and output and non-
local transfer of control. Often the primary objective when a programmer uses
a statement with an associated effect is that this effect occurs. For example the
main aim of a programmer using a print statement is the effect, printing to a
specified device. In such cases any returned result is usually discarded or used
as a check to ensure the desired effect occurred. The correct implementation and
use of effects may be of critical importance in ensuring a program behaves as
expected.

Type systems classify program expressions into different types. Possible types
include the primitive types of the language, polymorphic types, constructed types
and function types. A type system statically checks that the type of each program
phrase is within the allowable type constraints at this point in the program. This
checking is static as oppose to the dynamic runtime behaviour of the system. It
therefore provides a tractable syntactic method for proving that a program does
not violate the type constraints of a program. For example a string expression
cannot be stored in an integer variable or a character expression cannot be used as
a parameter to a function expecting an integer. Type systems are often included
in compilers to catch errors such as these.

The behaviour of effects can also be statically analysed. Although a type system
ensures that the type of a value stored in a mutable variable is correct it does
not normally say anything about the possible effects of this assignment. An
effect system is an augmented type system which provides additional information
about effects. Clearly the class of effect considered by the system determines the
information which can be ascertained by any analysis. An exception effect system
may determine whether the program contains any uncaught exceptions. An I/O
effect system could determine whether a certain device was read from or written
to. Effect systems may therefore be used to detect and/or prevent a different
class of errors than the typing errors described earlier. Like type systems, effect
systems may be included in compilers to discover such errors. Effect systems (and
type systems) may also be of use in code optimisation. For example if a program
does not alter the store then perhaps a local and more efficent representation of
the hard disk can be used. Such information may be returned by an effect system
considering assignment to mutable variables.
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2 1. INTRODUCTION

The class of effect considered by an effect system determines the information
which needs to be stored and manipulated by this system. An assignment effect
system must represent the store or mutable variables whereas an I/O effect system
must examine devices on which I/O may be performed. The complexity of the
system also has ramifications on the applicability of any returned information. An
exception effect system could just indicate that any pre-declared or user defined
exception may raise out of any program phrase. However this does not add much
value to our understanding of the meaning of a program phrase.

The effects themselves may be quite complicated. For example performing I/O
to one device may cause another form of I/O to occur which may be of interest
to our system. Exceptions can be caught and then cause other exceptions to be
raised. Assigning to one mutable variable may cause the store associated with
another mutable variable to be changed. It therefore may be necessary to consider
only a subset of possible effects or a single class of effects when initially designing
an effect system. For example considering only the effect of raising and handling
an exception or considering only mutable variables which reference base types.
This basic effect system can then be built upon. This is the approach that will
be taken in this project.

1.2 Aims and Objectives

The principal goal of this project is to design and implement a simple language
with a type system that includes information about effects. This goal will be
achieved by accomplishing the following sub-goals:

1. Examine, extend and implement an existing effect system designed by Leroy
and Pessaux [5] for a single computational effect.

2. Experiment with the implemented system and analyse the produced results.

3. Use the existing framework for the implemented effect system to design and
implement an effect system for a different class of computational effect.

4. Experiment with the effect system for this new class of computational effect
and evaluate the produced results.

5. Combine the two implemented effect systems to produce a system which
can analyse both classes of computational effect.

6. Experiment with the combined system and again analyse any produced
results.
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1.3 Project Layout

A brief introduction to the history of effect systems and the theory behind them
will be provided in chapter 2.

Chapter 3 contains a description of the extended Leroy and Pessaux type sys-
tem for the exception computational effect which was implemented. The source
language for which a type and effect may be inferred is described and the rules
governing the analysis performed by the system are given. Experiments are car-
ried out on the implemented system and the results discussed.

Chapter 4 contains a description of an effect system considering allocation, as-
signment and dereferencing of mutable variables. The source language and the
inference rules (along with any necessary auxiliary rules) for the implemented
system are given. Again experiments are carried out and the results discussed.

Chapter 5 contains a description of the effect system which is a combination of
the effect systems detailed in chapters 3 and 4. An overview of the system is given
and experiments illustrating the product of the amalgamation of the system are
performed and evaluated.

Chapter 6 contains the conclusions drawn from this project.
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2. Effect Systems

This chapter provides an introduction to the history of and theory behind effect
systems.

Many of the key ideas in modern effect systems were introduced by Lucassen
and Gifford in their Polymorphic Effect Systems [3] paper. The aim of this paper
was “to combine the advantages of functional and imperative programming”. The
effect system in this paper considered the storage effect, the allocation or altering
of the store during the execution of a program.

In the terminology of the paper the “effect system is part of a kinded type sys-
tem”. The three base kinds in the system are the type of a program, the (compu-
tational) effect of a program and the region in the store where these effects may
occur. All locations in the store are associated with a region.

The system deals with allocation, dereferencing and assignment to the store de-
scribed by the three kinds of effect ALLOC, READ and WRITE respectively, achieved
by the NEW, GET and SET operations respectively. The system distinguishes be-
tween PURE functions (which do not produce a computational effect) and effect
producing functions. Effect producing functions are annotated by their latent
effect. The latent effect being the set of computational effects which may occur
when the function is applied.

A first class value is a value which may be a parameter to a function, returned
by a function or stored in memory. An advantage of the system detailed in this
paper compared to earlier effect systems was the ability to use both functions
and references as first class values. The annotation of a function with its latent
effect gives the system this ability to treat functions as first class values. This is
a key trait in analysing functional languages in which this higher-order style of
programming is prevalent.

The effect systems considered in this project all annotate function types with the
effect of their application and all have the ability to treat functions as first class
values.

A key advance in the design of this type system was the ability to mask computa-
tional effects not observable outside out of a program or a given expression. This
means that the system returns an estimate to the actual effect of the program
rather than the complete set of effects which may occur in the program and all
its sub-expressions. Note the authors prove the soundness of their system. The
system is sound in that the set of possible effects is a conservative approximation
to the set of actual effects that may arise during execution of the program.

5



6 2. EFFECT SYSTEMS

Effect masking is very important in increasing the accuracy of the analysis re-
turned by an effect system. This concept of effect masking is used in the effect
systems investigated in this project to produce better results when pattern match-
ing is applied to a term.

The Lucasen and Gifford system was polymorphic in terms of both the effect and
region kinds. Note however that the system distinguishes between the application
of a normal function and a polymorphic function and could not easily be extend
to a complex implicitly typed functional language such as ML. A more implicit
style of typing supporting type polymorphism was introduced in a later paper by
Talpin and Jouvelot [6]. In this paper the same kinded type system is used as in
the Lucassen and Gifford system. Type polymorphism is a property of the effect
systems considered in this project.

In the described papers and in the effect systems investigated in this paper the
effect system is itself introduced as a series of inference rules for inferring the
type and effect of a language phrase. If the premises to these rules hold then
the conclusion to the rules also holds. Other auxillary algorithms may also be
provided as part of the system such as unification algorithms necessary for type
polymorphism.

Lucassen and Gifford believed their effect system had the following applications:

• Specifying the computational effects that a program may produce in a
machine-verifiable way.

• Identifying hard to detect optimisations either for evaluation order (for
example if two programs do not have interferring effects they may run
concurrently) or for common sub-expression elimination.

• Enforcing computational effect constraints allowing a safe integration of
imperative programming features into functional languages.

Talpin and Jouvelot [7] consider another interesting application of effect systems
to allow more efficient type generalization to be performed in let x = a1 in a2

construct where the type of a1 may be generalized.



3. Exception Effect System

3.1 Overview

Non-local transfers of control are a class of computational effect. Examples in-
clude exceptions, jumps and continuations. In this chapter I will extend and
evaluate an effect system for a simple language containing exceptions.

An exception is a means by which a called function can signal to its caller that it
was unable to perform its desired task. If an exception is not handled or caught
by a function it is propagated up the call stack until a function which handles
the exception is found. If the exception is not handled by any function in the call
stack (ie. it escapes) the program is terminated. Languages such as Java and
ML contain exceptions.

Exceptions provide an alternative to the C style method of error reporting. In C
return values have associated meanings indicating whether a function executed
successfully or not. Exceptions allow easy propagation of an error to an appro-
priate place in the code. This can take considerable effort using the C style
method of error reporting. Exceptions have the favourable property of allowing
easy separation of normal and error handling code.

The Java tutorial defines an exception as “an event that occurs during the ex-
ecution of a program that disrupts the normal flow of instructions.” In Java
terminology an exception is thrown when an exception object is created and
passed to the java runtime system. Java divides its exceptions into two different
classes, checked exceptions and runtime exceptions.

Checked exceptions are analysed by the compiler and must be caught or specified
to raise out of any method in which they may be thrown but are not caught. In
Java an exception is caught using the try {} catch() {} language construct. An
exception is specified that it may escape out of a method using the throws key-
word. User defined exceptions are often checked exceptions as are I/O exceptions
indicating information such as a file system is full.

Runtime exceptions represent a class of exceptions which are thrown when errors
are detected by the runtime system. Examples include a calculation involving
division by zero, arithmetic overflow, an array being indexed out of bounds or
I/O failing. These may escape in numerous places throughout a program (eg.
everytime a division or array access occurs). Therefore the cost of checking for
such errors outweigh the benefits of catching or specifing them.

As noted by Leroy and Pessaux [5] the Java method of specifying possibly escap-

7



8 3. EXCEPTION EFFECT SYSTEM

ing exceptions is not appropriate for ML due to the “higher-order, polymorphic
programming” style that ML promotes. This is illustrated if the map function
is considered. The map function iterates through a list applying a function (it
takes as a parameter) to every element in the list. If the Java method of specify-
ing exceptions which may escape was used then the map function would have to
specify that all possible exceptions may escape to maintain the generic nature of
this function. As stated in the introduction such an effect system would not be
of much value in detecting uncaught exceptions.

This chapter will consider an effect system based on a system designed by Leroy
and Pessaux [5]. The aim of this effect system is to analyse a simple language
based on ML to detect uncaught exceptions. The key advantage of this method of
exception analysis is that it does not rely on the programmer to specify exceptions
which may raise out of a function. As in ML the program is implicitly typed.
The effect of the program is also implicitly typed in this effect system.

The effect system has been implemented, experiments run and analysis carried
out as detailed in this chapter.

3.2 The Effect System

This section provides a description of the implemented effect system. A more
detailed analysis can be found in the original paper [5].

3.2.1 The Source Language

The source language is based on a small subset of ML. Like ML it allows higher-
order functions, raising and handling exceptions and (simplified) pattern match-
ing. The original source language has been extended to include the boolean data
type in addition to integers and exceptions. The enlarged language also contains
recursive functions, a key trait of ML which was not included in the original
language.

Program: prog ::= decs a | a program
Declarations: decs ::= dec, decs multiple declarations

| dec; single declaration
Declaration: dec ::= exception C constant exception

| exception D(type) parameterized exception
Type: type ::= int integer type

| exn exception type
| bool boolean type
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| type→ type function type
Term: a ::= x identifier

| i integer constant
| true | false boolean constants
| λx.a abstraction
| a1(a2) application
| let x = a1 in a2 the let binding
| match a1 with pats | x→ a2 pattern-matching
| C | D(a) exception constructors
| try a1 with x→ a2 exception handler
| if a1 then a2 else a3 selection operation
| a1 + a2 | a1 − a2 arithmetic operators
| a1 ∗ a2 | a1/a2

| a1 orelse a2 logical operators
| a1 andalso a2

| not(a1)
| a1 = a2 | a1 <> a2 comparison operators
| a1 > a2 | a1 < a2

| a1 >= a2 | a1 <= a2

Patterns: pats ::= p→ a | pats multi-case pattern
| p single case pattern

Pattern: p ::= x variable pattern
| i | C constant patterns
| D(p) constructed pattern

The original source language did not permit the language user to declare their
own exceptions but instead assumed a number of predeclared constant and pa-
rameterized exceptions. I have extended the language to allow the user to declare
their own exceptions. Predeclared exceptions still exist, they can be considered to
be analogous to the built in exceptions in ML such as Div and SysErr. A comma
separated list of user defined exceptions is optionally included at the start of any
program. The type of the argument to any parameterized exceptions must be
specified.

The let x = a1 in a2 construct implements the let binding. As expected,
any previous values bound to the idenifier x are overidden by a1. Unlike in the
effect system described in the original paper recursive functions are allowed in
the augmented effect system.

The match a1 with pats | x → a2 construct performs multi-case (or single-case)
pattern matching on the value a1. If no match is found then a2 is evaluated.
This is an extension of the original system which required the cascading of match
constructs to implement multi-case pattern matching.
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Exceptions are raised using the predefined function raise. The try a1 with x→
a2 construct catches any exception and binds it to x. Catching a specific exception
is performed using a combination of the try and match constructs as shown.

exception C;
try raise (C)
with x→ match x with C→ 1 | y→ raise (y)

The if a1 then a2 else a3 construct has been added to the system in order
to carry out more interesting experiments. Arithmetic, logical and comparison
operators are also part of the augmented language. These operators, like raise,
are implemented using predefined functions in the initial environment. This im-
plementation is however hidden (by the lexer/parser and the BOP typing rule)
from the language user meaning the operators can be used infix as shown in the
above source language.

3.2.2 The Type Algebra

The type system is based upon the following type algebra.

Type Expressions: τ ::= α type variable
| int[ϕ] integer type
| exn[ϕ] exception type
| bool boolean type

| τ1
ϕ→ τ2 function type

Type Schemes: σ ::= ∀αi, ρj, δk.τ
Rows: ϕ ::= ρ :: K(ρ) row variable and kind

| > all possible elements
| ε; ϕ element ε plus what is in ϕ

Row elements: ε ::= i : π integer constant
| C : π constant exception
| D(τ) parameterized exception

Presence annotations: π ::= Pre element is present
| δ presence variable

Kinds: K ::= INT(set of integers) integer kind
| EXN(set of exceptions) exception kind

There are three base types; the integer type, the exception type and the boolean
type as oppose to two in the original system (the integer type and the exception
type).

Integer (and exception) types are annotated by the set of integers (or exceptions)
that an expression of type int[ϕ] (or exn[ϕ]) may evaluate to. These sets of
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integers or exceptions are represented by rows made up of a sequence of row
elements and terminated by a row variable. A row element may represent a
constant or parameterised exception or an integer. A row can contain either a
sequence of integer or exception row elements but not a mixture. The order
of row elements in a row is unimportant. Constant exceptions (as opposed to
parameterized exceptions) and integers have an associated presence annotation.
An associated presence annotation of Pre indicates the element is in the set and
an associated presence variable means the element is not in the set. However
an element with an associated presence variable may be considered present if
necessary during unification. The effectively 1 infinite set of integers may be
represented by > when appropriate, no analogous representation exists for the
finite set of predeclared and user defined exceptions. > is absorbing in that
i : Pre;> = >.

The boolean type is an addition to the original system. For ease of implementa-
tion the boolean type was not annotated.

The function type, as in effect systems, is labelled with the effect of the applica-
tion of this function. In this system the effect is the escaping of an unhandled
exception.

3.2.3 The Kinding Rules

The kinding rules can be separated into two classes; those ensuring correct kinding
and those ensuring an inferred type is well formed (and of the correct kind).

3.2.3.1 Kinding

` ρ :: K(ρ) ` > :: INT(S)
i 6∈ S ` ϕ :: INT(S ∪ {i})
` (i : π; ϕ) :: INT(S)

C 6∈ S ` ϕ :: EXN(S ∪ {C})
` (C : π; ϕ) :: EXN(S)

D 6∈ S ` ϕ :: EXN(S ∪ {D}) ` τ wf

` (D(τ); ϕ) :: EXN(S)

3.2.3.2 Well-formedness

` α wf ` bool wf
` ϕ :: INT(∅)
` int[ϕ] wf

` ϕ :: EXN(∅)
` exn[ϕ] wf

1Constrained by the representation of an integer in the language implementing the effect
system
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` τ1 wf ` ϕ :: EXN(∅) ` τ2 wf

` τ1
ϕ→ τ2 wf

In order to ensure the existence of prinipal unifiers and principal typings and to
simplify the type inference rules the following structural invariants must hold on
a row:

1. A given integer constant or exception constructor should occur at most once
in a row.

2. A row variable ρ is preceded by the same set of integer constants and
exception constructors in all row expressions where it occurs.

3. A row ϕ annotating an integer type int[ϕ] can only contain integer row
elements.

4. A row ϕ annotating an exception type exn[ϕ] or a function type τ1
ϕ→ τ2 can

contain only constant or parameterized exception row elements and must
not end with >.

(1) and (2) are necessary invariants for unification. (3) and (4) ensure a separation
between the annotations on integer and exception types. Clearly as > is only
absorbing for integer types it should only be present in a row annotating an
integer type and therefore should not terminate a row containing exception row
elements.

Kinds are used to enforce these invariants. The constants and constructors ap-
pearing in the set part of a kind (INT{i1, . . . , in} or EXN{C1, . . . , Cn, D1, . . . , Dn})
cannot appear in a row of this kind. These constants and constructors have al-
ready appeared in row elements concatenated before this row. For example if
i : π; ϕ has kind INT{S} (where i 6∈ S) then the row ϕ has kind INT{S ∪ {i}}.

3.2.4 The Typing Rules

3.2.4.1 Initial Environment

The initial typing environment E0 from the original effect system has been ex-
tended to include predefined functions which will implement the arithmetic, log-
ical and comparison operators.

E0 = {raise : ∀α, ρ.exn[ρ]
ρ→ α,

+,−, ∗ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ int[>],

/ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

Div:Pre;ρ4−→ int[>],

orelse, andalso : ∀ρ1ρ2.bool
ρ1→ bool

ρ2→ bool,
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not : ∀ρ1.bool
ρ1→ bool,

=, <>,<, >, <=, >=: ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ bool}

A number of predeclared exceptions have also been included in the system.

3.2.4.2 Typing of Expressions

The typing rules for the system follow.

τ ≤ E(x)

E ` x : τ
ID

` ϕ′ :: INT({i}) ` ϕ :: EXN(∅)
E ` i : int[i : Pre; ϕ′]/ϕ

INT

` ϕ :: EXN(∅)
E ` true : bool/ϕ

TRUE
` ϕ :: EXN(∅)

E ` false : bool/ϕ
FALSE

E ` not (a) : τ/ϕ

E ` not a : τ/ϕ
NOT

E ` ◦ (a1) (a2) : τ/ϕ

E ` a1 ◦ a2 : τ/ϕ
BOP

` τ1 wf E ⊕ {x : τ1} ` a : τ2/ϕ
′ ` ϕ :: EXN(∅)

E ` λx.a : (τ1
ϕ′
→ τ2)/ϕ

ABS

E ` a1 : (τ ′ ϕ→ τ)/ϕ E ` a2 : τ ′/ϕ

E ` a1(a2) : τ/ϕ
APP

E ⊕ {x : Gen(τ1, E, ϕ)} ` a1 : τ1/ϕ E ⊕ {x : Gen(τ1, E, ϕ)} ` a2 : τ/ϕ

E ` let x = a1 in a2 : τ/ϕ
LET

E ` a1 : τ1/ϕ ` p : τ1 ⇒ E ′

` τ1 − p ; τ2 E ⊕ E ′ ` a2 : τ/ϕ E ⊕ {x : τ2} ` a3 : τ/ϕ

E ` match a1 with p→ a2 | x→ a3 : τ/ϕ
MATCH

` ϕ′ :: EXN({C}) ` ϕ :: EXN(∅)
E ` C : exn[C : Pre; ϕ′]/ϕ

EXC

τ ≤ TypeArg(D) E ` a : τ/ϕ ` ϕ′ : EXN({D})
E ` D(a) : exn[D(τ); ϕ′]/ϕ

PEXC

E ` a1 : τ/ϕ′ E ⊕ {x : exn[ϕ′]} ` a2 : τ/ϕ

E ` try a1 with x→ a2 : τ/ϕ
TRY

E ` a1 : bool/ϕ E ` a2 : τ/ϕ ` a3 : τ/ϕ

E ` if a1 then a2 else a3 : τ/ϕ
IF
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E1 ⊕ E2 is the asymetric concatenation of the two environments E1 and E2.
E1 ⊕ E2 (x) = E2 (x) if x ∈ Dom(E2) and E1 ⊕ E2 (x) = E1 (x) if x ∈
Dom(E1) \Dom(E2).

3.2.4.3 Typing of Patterns

` x : τ ⇒ {x : τ} ` i : int[i : π; ϕ]⇒ {}

` C : exn[C : π; ϕ]⇒ {}
τ ≤ TypeArg(D) ` p : τ ⇒ E

` D(p) : exn[D(τ); ϕ]⇒ E

3.2.4.4 Pattern Subtraction

` int[i : π; ϕ]− i ; int[i : π′; ϕ] ` exn[C : π; ϕ]− C ; exn[C : π′; ϕ]

` τ ′ wf

` τ − x ; τ ′
` τ − p ; τ ′

` exn[D(τ); ϕ]−D(p) ; exn[D(τ ′); ϕ]

3.2.4.5 Instantiation and Generalization

τ ′ ≤ ∀αiρjδk.τ if and only if there exists τi, ϕj, πk such that ` τi wf and ` ϕj ::
K(ρj) and τ ′ = τ{αi ← τi, ρj ← ϕj, δk ← πk}

Gen(τ, E, ϕ) is ∀αiρjδk.τ where {αi, ρj, δk} = FV (τ) \ (FV (E) ∪ FV (ϕ))

Most of the rules are the standard typing rules for these language constructs with
an effect component, ϕ. The inference rules which cannot raise an effect (ID, INT,
TRUE, FALSE, ABS, EXC, PEXC) have an effect of component of EXN(∅) which can
be used as needed during unfication.

The LET rule has been altered from the original system so that a type may be
inferred for recursive functions [1].

The NOT and BOP define how the APP inference rule is used so that the language
user cannot detect a function is actually being applied when arithmetic, logical
and comparison operators are used. These rules are additions to the effect system.
The IF rule is also not found in the original type system.

The ABS rule uses the effect of the body of the abstraction as the effect of the
application of the function (which is applied using the APP rule).

In the integer rule, INT, and the constant exception rule, EXN, the value of the
expression is recorded in the row annotating the corresponding integer and ex-
ception type respectively.
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The rules concerning type inference and pattern matching of parameterized ex-
cepions make use of the auxiliary function TypeArg(D). This function returns
the type scheme of D. TypeArg(D) = ∀ρ.int[ρ] for an exception D with an in-
teger parameter. TypeArg(D) = ∀ρ.exn[ρ] for an exception D with an exception
parameter. TypeArg(D) = bool for an exception D with a boolean parameter.
Function parameterized exceptions are more complex but can be intuitively built
from these base types, for example TypeArg(D) = ∀ρ1ρ2ρ3.int[ρ1]

ρ2→ int[ρ3] for
an exception D with a function parameter mapping an integer to an integer.

Some of the power of this system comes from the accuracy of the pattern matching
rule, MATCH, for the match a1 with p → a2 | x → a3 construct. If the second
alternative a3 is evaluated we can ascertain that the term a1 did not match the
pattern p. Therefore the type of the identifier x cannot be any type matching
pattern p. The possible types of x can therefore be calculated by subtraction of
the pattern from the type of a1.

3.3 Implementation

The implementation completed is based on the effect system described in the
original paper and its appendices. A number of extensions have been made to
the original system as noted above. Some stages of the implementation required
a slight deviation from the system described in the paper either to overcome bugs
or realise these extensions.

3.3.1 Difficulties

A number of errors and ambiguities were uncovered in the original forms of the
algorithms during implementation. A lot of the errors were related to the unifica-
tion variables and the maintenance of a list detailing which unification variables
had already been used. An example of such an error is in the auxiliary function
Patsubtr. In the incorrect version when pattern subtraction is performed on
integers and constant exceptions the returned list of used unification variables
is incomplete. Depending on how this list is maintained this may lead to the
unification algorithm failing or returning incorrect results.

Similarly the Inst auxiliary function in the original paper fails to keep track
of unification variables. This function is used to instantiate identifiers from the
typing environment and in type inference on parameterized exceptions. Again
this fault may lead to problems during unification or type inference.

A major source of ambiguity in the original algorithms is in the unification of two
rows (of the form ε; ϕ). The original pseudocode for the algorithm states a new
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(unbound) row variable must be created which is “not free” in either of the rows
being unified. Clearly this is not possible as a variable cannot be bound (ie. not
free) if it has not been used in any expression. I decided that as the algorithm
did not give a methodology for selecting a bound variable from either of the rows
and the fact the new variable was assigned a new type that an unbound variable
was actually required for this stage in the unification.

3.3.2 Using the implementation

The implementation is divided into a number of ML source files. The code
for unification and type inference are separated into different files. Leroy and
Pessaux consider extension of their simple language to the full ML language.
In order to realise features of ML such as recursive datatypes this may require a
different form of unification. The completed implementation uses term unification
however to incorporate these more complex features graph unification may be
necessary. The division of the unification and type inference code will aid in
any such project extensions. Other key source files include an environment ML
source file containing predeclared exceptions, functions and variables and a pretty
printer. The environment file allows easy manipulation of the initial environment.
The pretty printer transforms the output of the original effect system into a
more human friendly form. A parser and lexer have also been implemented using
mosmllex and mosmlyacc [2]. The required files are compiled and linked using
mosmlc. The effect system is started using a single command which begins the
mosml environment. Program analysis can be carried out on a specified file or
on user input to the command line.

3.3.3 Possible implementation extensions

The main aim of this project is to design and implement a simple language
with a type system that includes information about effects. The implementation
produced allows experiments to be carried out and the results to be evaluated.
A pretty printer has been implemented as stated as an extension to the basic
system. Another relatively simple but useful augmentation would be to improve
the error information returned by the system for programs for which a type and
effect cannot be inferred.

The system could also be built upon to create a compiler or interpreter for the
source language. The results of running a program could be compared to the
static analysis of the program produced by the effect system.
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3.4 Experimentation

The following section contains experiments illustrating the behaviour and output
of the implementation. Analysis of this behaviour and output is also carried out.

3.4.1 Example Typings

In order to verify the correctness of the implementation and its concurrence with
the original Leroy and Pessaux paper analysis of a couple of their examples has
been carried out.

Consider catching and handling a constant exception (note this example takes
advantage of the ability of the programmer to define exceptions).

exception C;
try raise (C)
with x→ match x with C→ 1 | y→ raise (y)

The type of this program is int[1 : Pre; ρ] and the effect is C : δ; ρ′. The pretty
printer returns the following output.

The program evaluates to the integer 1.
No exception escapes from this program.

Consider a more complex iteration of this example 2 involving the let construct
and treating exceptions as first class values.

exception C1, exception C2;
let test = λex. try raise (ex)
with x→ match x with C1→ 1 | y→ raise (y)

in test (C2)

The type of this program is int[1 : Pre; ρ] and the effect is C1 : δ; C2 : Pre; ρ′.
The pretty printer returns the following output.

The program can evaluate to the integer 1.
The exception C2 may escape from this program.

Note if the test function had been applied to the exception C1 then the output
would have been the same as for the previous example.

2In the original example the parameter to the test function was named exn. This is no longer
possible as exn is a keyword used for specifying the type of the parameter to parameterized
exceptions.
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3.4.2 Pattern Matching

The language has been extended to include multi-case pattern matching (as noted
in the Leroy and Pessaux paper this has been implemented using cascading match

constructs).

exception C1, exception C2, exception C3;
let multicase = λex. try raise (ex)
with x→ match x with

C1→ raise (C1) | C2→ raise (C2) | C3→ raise (C3) | y→ raise (y)
in multicase (C1)

The type of this program is α and the effect is C3 : Pre; C2 : Pre; C1 : Pre; ρ. The
pretty printer returns the following output.

An exception always escapes from this program.
The exceptions C3, C2 and C1 may escape from this program.

As in ML any exception can be pattern matched again both constant and pa-
rameterized exceptions.

exception C, exception D(int);
match D(1) with C→ 1 | y→ 2

The type of this program is int[2 : Pre; 1 : Pre; ρ] and the effect is ρ′. The pretty
printer returns the following output.

The program evaluates to the integers 2 or 1.
No exceptions escape from this program.

Note that it is not possible to pattern match an integer against an exception or
vice versa. No type or effect can be inferred for the following example.

exception C;
match C with 1→ 1 | y→ 2

3.4.3 Handling Exceptions

Exceptions are handled by the try a1 with x → a2 language construct. Any
raised exception is bound to x and a2 evaluated. This is different from the ML
method of handling exceptions. In ML exceptions are handled by the handle

construct and rather than catching all exceptions, exceptions to be caught are
listed by name.

Type inference on the try construct is somewhat naive.
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exception C;
try 1 with x→ raise (C)

The type of this program is int[1 : Pre; ρ] and the effect is C : Pre; ρ′. The pretty
printer returns the following output.

The program can evaluate to the integer 1.
The exception C may escape from this program.

Clearly the program phrase 1 will never raise an exception and so raise (C)
should never be evaluated. The effect of the program phrase 1 is ρ indicating
that no exception can escape. However the above typing results as the a2 (from
the try construct) is always evaluated and its effect is the effect of the whole
phrase in the TRY inference rule. A more powerful system could analyse the effect
of the term a1 (from the try construct) and then determine whether or not to
evaluate term a2. A simple but improved implementation may be achieved using
the following two type inference rules instead of the original TRY type inference
rule.

E ` a1 : τ/ρ

E ` try a1 with x→ a2 : τ/ρ
TRY1

E ` a1 : τ/ϕ1 E ⊕ {x : exn[ϕ1]} ` a2 : τ/ϕ

E ` try a1 with x→ a2 : τ/ϕ
TRY2

These rules do not take into account when exceptions are indicated to be handled.
For example a term having effect Div : δ; ρ indicates the Div exception may be
raised within this term but this is always handled and so Div can never raise out of
this term. A possible extension to the system would be to build upon these simple
rules to implement a system which provides more accurate exception handling by
taking into account when exceptions are indicated to be handled.

3.4.4 Functions

Functions are created in this language using the λ language construct. Consider
the following example from the original paper.

λf. λg. λx. f (g (x))

The type of this program is (α
ρ→ α′)

ρ′
→ (α′′ ρ→ α)

ρ′′
→ α′′ ρ→ α′ and the effect is

ρ′′′. The pretty printer returns the following output.

The program evaluates to the function type (α
ρ→ α′)

ρ′
→ (α′′ ρ→ α)

ρ′′
→ α′′ ρ→ α′.

No exception escapes from this program.



20 3. EXCEPTION EFFECT SYSTEM

The following example is also taken from the original paper.

exception D(int);
λn. raise (D(n))

The type of this program is int[ρ]
D(int[ρ]);ρ′

→ α and the effect is ρ′′. The pretty
printer returns the following output.

The program evaluates to the function type int[ρ]
D(int[ρ]);ρ′

→ α
No exception escapes from this program.

The pretty printer does not give information about the possible effect of the
application of the functions in the previous examples. This effect is the union of
the possible effects of the parameters to the function and the possible effect of
the function application. An extension to the project would be to implement a
system giving more information about this possible effect. The difficulty arises
from the fact that the effect of one parameter to a function may indicate an
exception is always handled whereas another parameter may indicate an exception
may escape. Determining the union of these effects requires an analysis of how
these parameters are used. Also presenting the information, once this union is
determined, in a easily readable way is also an issue. Consider the first function
in this section. A pretty printer could return the following output.

The effect of the application of this function is the union of the

effects of the parameters f, g and x to the function.

Although correct this output does not have an intuitively understood meaning.

3.4.5 Predefined Functions

Raising exceptions and arithmetic, logical and comparison operators are all im-
plemented as predefined functions. This is an easy way of enriching the language
without introducing a large number of new type inference rules.

let x = 1

in let increment = λn. n + 1

in increment (x)− x

The type of this program is int[>] and the effect is ρ. The pretty printer returns
the following output.

The program evaluates to any integer.
No exception escapes from this program.

The BOP rule permits the arithmetic, logical and comparison operators to be used
infix. In the implemented system it is not possible to use these predefined func-
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tions directly using the APP rule due to constraints on the list of valid identifiers
enforced by the lexer/parser.

Note that the type inference algorithm ensures the parameters to these predefined
functions are valid. For example type inference on the following program fails.

exception C;
C + C

3.4.6 Predeclared Exceptions

Although user defined exceptions are now possible in the augmented language, a
number of predeclared exceptions still exist in the effect system. One such prede-
clared exception is the Div exception (analogous to the ML built in exception of
the same name). This exception may escape when a division by zero could have
occurred.

let x = 1

in x/1

The type of this program is int[>] and the effect is Div : Pre; ρ. The pretty
printer returns the following output.

The program can evaluate to any integer.
The exception Div may escape from this program.

This example illustrates one of the weaknesses of this system. In that it (cor-
rectly) always states that any division may result in a Div exception being raised.
If this system was being used to enforce that all exceptions are caught it may be
necessary to use the try language construct everytime a division is carried out.

let x = 1

in try x/1 with y→ x

The type of this program is int[1 : Pre;>] and the effect is ρ. The pretty printer
returns the following output.

The program evaluates to any integer.
No exception escapes from this program.

One solution to this problem is to use the java methodology and divide exceptions
into runtime exceptions (which do not need to be caught or specified) and checked
exceptions which are analysed by the compiler.
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3.4.7 Boolean Type

The augmented source language contains the boolean type as well as the integer
and exception types from the original system.

let x = true

in let double = λy. y + y

in x andalso double (1) > 1

The type of this program is bool and the effect is ρ. The pretty printer returns
the following output.

The program evaluates to a boolean value.
No exception escapes from this program.

Parameterized exceptions can have boolean parameters (and function types con-
taining boolean types) as well as integer and exception parameters.

exception D(bool);
let x = true

in raise (D(x))

The type of this program is α and the effect is D(bool); ρ. The pretty printer
returns the following output.

An exception always escapes from this program.
The exception D(bool) may escape from this program.

3.4.8 Selection Operation

The if a1 then a2 else a3 construct has been added to allow experiments in-
volving selection to be carried out. As expected the term a1 is constrained to be
of boolean type.

(∗ simple function to raise an error if parameter is negative∗)
exception Error(int);
let isError = λn. if n < 0 then raise (Error(n)) else n

in isError (1)

The type of this program is int[1 : Pre; ρ] and the effect is error(int[1 : Pre; ρ]); ρ′.
The pretty printer returns the following output.

The program can evaluate to the integer 1

The exception error(1) may escape from this program.
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3.4.9 Function Parameterized Exceptions

Parameterized exceptions are included in the original Leroy and Pessaux paper
however no analysis is carried out of their most interesting feature. Parameterized
exceptions can accept functions as their arguments.

exception D(int→ bool);
try raise (D(let positive = λn. n > 0 in positive))
with x→ match x with D(func)→ func (1) | y→ raise (y)

The type of this program is bool and the effect is D(α); ρ. The pretty printer
returns the following output.

The program evaluates to a boolean value.
No exception escapes from this program.

This example shows how the function parameter to an exception can be applied
to a parameter using pattern matching. Note the binding which occurs in the
pattern matching. In the following program the identifier func is declared to
have a different type than that expected by the exception.

exception D(int→ bool);
let func = 1

in try raise (D(let positive = λn. n > 0 in positive))
with x→ match x with D(func)→ func (1) | y→ raise (y)

The type and effect of this program is the same as for the previous example.
Clearly the type of the function parameter is bound to the identifier func.

Note more complicated examples are possible involving higher order functions.

exception D(int→ bool);
let isTheSame = λn1. λn2. n1 = n2

in try raise (D(isTheSame (1)))
with x→ match x withD(func)→ func (1) | y→ raise (y)

Again the same type and effect is returned.

3.4.10 Recursive Functions

The original effect system has been augmented so that it may infer types for
programs involving recursive functions. The standard recursive example and the
corresponding type and effect given by the system follows.

let factorial = λn. if n = 0 then 1 else n ∗ fact(n− 1)
in factorial(5)
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The type of this program is int[>] and the effect is ρ. The pretty printer returns
the following output.

The program evaluates to any integer.
No exception escapes from this program.

3.4.11 Complex Example

The following example is an adaptation of a non-trivial function involving excep-
tions from an ML textbook [4]. The function change (x) returns the number of
ways of changing the monetary value x using the coins 1, 2, 5, 10, 20, 50. The
example involves a large number of the language constructs working together.

exception Change, exception InvalidDenomination;
let denomination =
λn. match n

with 1→ 1 | 2→ 2 | 3→ 5 | 4→ 10 | 5→ 20 | 6→ 50

| y→ raise(InvalidDenomination)
in let count =

λamount. λkindsLeft.
if amount < 0 orelse kindsLeft = 0

then raise (Change)
else

if amount = 0 then 1 else

try count (amount− denomination (kindsLeft)) (kindsLeft)
with x→ match x with Change→ 0 | y→ raise (y)

+
try count (amount) (kindsLeft− 1)
with x→ match x with Change→ 0 | y→ raise (y)

in let change =
λamount. count (amount) (6)
in change (100)

The type of this program is int[>] and the effect is
Change : Pre; InvalidDenomination : Pre; ρ. The pretty printer returns the fol-
lowing output.

The program evaluates to any integer.
The exceptions Change and InvalidDenomination may escape from this program.

The fact that the system infers InvalidDenomination may escape shows how
it can detect the propagation of exceptions up the call graph. Change may also
escape from this program if the amount parameter to count is negative or the
kindsLeft parameter is 0. It is not possible to handle the Change exception
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within the count function as the raising of this exception is how the function
detects that it needs to use a smaller denomination of coin (ie. how backtracking
is implemented). It would be possible to ensure that Change never escapes using
the try language construct and placing it around the application of the count

function as shown.

exception Change, exception InvalidDenomination,
exception Error;
let denomination =
λn. match n

with 1→ 1 | 2→ 2 | 3→ 5 | 4→ 10 | 5→ 20 | 6→ 50

| y→ raise(InvalidDenomination)
in let count =

λamount. λkindsLeft.
if amount < 0 orelse kindsLeft = 0

then raise (Change)
else

if amount = 0 then 1 else

try count (amount− denomination (kindsLeft)) (kindsLeft)
with x→ match x with Change→ 0 | y→ raise (y)

+
try count (amount) (kindsLeft− 1)
with x→ match x with Change→ 0 | y→ raise (y)

in let change =
λamount. try count (amount) (6)
with x→ match x with Change→ raise (Error) | y→ raise (y)

in change (100)

The type of this program is int[>] and the effect is
Change : Delta; InvalidDenomination : Pre; Error : Pre; ρ. The pretty printer
returns the following output.

The program can evaluate to any integer.
The exceptions InvalidDenomination and Error may escape from this program.

3.5 Conclusion

The examples from this chapter illustrate the power of the implemented effect
system. Much of the power of this system comes from the use of rows to annotate
the integer and exception base types. These rows indicate the possible values a
term of integer or exception type may have. This allows more precise pattern
matching and exception handling to be carried out than if unannotated types
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where used.

In this system the boolean type was unannotated. This was a design decision
in order to reduce the complexity of the necessary implementation. Due to the
small size of the boolean set ({true, false}) if the boolean type had been anno-
tated this may have allowed some powerful inference rules to be implemented for
the selection operation and logical operators. This would be a relatively simple
extension to the implementation but will not be considered in this project.

In the following chapter a system will be implemented for another type of com-
putational effect using the ideas behind this exception effect system.



4. Storage Effect System

4.1 Overview

In this chapter we consider the “storage effect”, the allocation or mutation of
storage during the execution of a program. ML contains both mutable variables
and immutable variables. A mutable variable is one whose value may be changed
whereas the value of an immutable variable cannot. Each mutable variable has an
associated mutable cell or container within the store which contains data values
of a fixed type. During the evaluation of a program the contents of this cell may
be altered or retrieved. This is in contrast to immutable variables which have
an unchanging associated value. Note both mutable variables and immutable
variables have a fixed type.

Ordinary (immutable) ML variables are declared with an associated fixed value
using the ML val keyword. For example, val pi = 3.145926; declares a variable
pi (of type real) to have value 3.145926. The value of pi cannot be altered.
However a variable of the same name with a different value can be created but
again this new variable will be immutable. Note that the expression pi = 3.0 eval-
uates to false, the result of the equality comparison operation between 3.145926
and 3.0.

Mutable ML variables are known as references in ML and are declared using the
ML val and ref keywords. For example, val piref = ref 3.145926; declares
a variable piref (of type real ref) to have value ref 3.145926;. To use the
contents of the mutable cell associated with piref in an expression the variable
must be explicitly dereferenced using the ! operator. !piref has value 3.145926
and type real. Altering the contents of the mutable cell associated with a mu-
table variable is achieved with the := operator. For example to alter the value of
piref to 3.0, piref := 3.0.

Mutable variables do not necessarily have to reference values of a base type. In
languages such as ML it is valid for a mutable variable to reference a value which
has a function type, a constructed type or even another reference type. This
introduces the problem of aliasing where two mutable variables are bound to the
same mutable cell. Assigning to one of these variables will therefore alter the
referenced value of the other.

An effect system analysing the behaviour of mutable variables is of interest for
a number of reasons. Such an effect system could be used for optimisation by a
compiler if, for example, a mutable variable is created but the associated store is
never altered. An effect system may also be used to determine what parts of the

27
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store are altered by a program. The ability of the effect system to perform these
tasks is dependent on how the effect is represented. This representation may be
based on either the variables referencing the store or the parts of the store being
referenced or perhaps some combination of both.

In this chapter I will consider a storage effect system based on the variables
referencing the store. This effect system is based on the framework developed
in the exception effect system. As in ML the program is implicitly typed. The
effect of the program is also implicitly typed in this effect system.

The effect system has been implemented, experiments run and analysis carried
out as detailed in this chapter.

4.2 The Effect System

This section provides a description of the implemented effect system.

4.2.1 The Source Language

The source language is based on a small subset of ML. Like ML it allows mutable
variable allocation, dereferencing and assignment. As in the exception effect
system it also allows higher-order functions, recursive functions and (simplified)
pattern matching.

Program: prog ::= decs a | a program
Declarations: decs ::= dec, decs multiple declarations

| dec; single declaration
Declaration: dec ::= val x = ref a1 mutable variable
Term: a ::= x identifier

| i integer constant
| !(a1) dereference
| a1 := a2 assignment
| λx.a abstraction
| a1(a2) application
| let x = a1 in a2 the let binding
| match a1 with pats | x→ a2 pattern-matching
| if a1 then a2 else a3 selection operation
| a1 + a2 | a1 − a2 arithmetic operators
| a1 ∗ a2 | a1/a2

| a1 orelse a2 logical operators
| a1 andalso a2
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| not(a1)
| a1 = a2 | a1 <> a2 comparison operators
| a1 > a2 | a1 < a2

| a1 >= a2 | a1 <= a2

Patterns: pats ::= p→ a | pats multi-case pattern
| p single case pattern

Pattern: p ::= x variable pattern
| i constant pattern

Mutable variables are allocated at the start of a program using the val x =
ref a1 language construct. Mutable variables have global scope. Dereferencing
and assignment to a mutable variable is achieved, as in ML, using the ! and
:= operators respectively. Obviously the system will not allow an identifier to
be assigned to or dereferenced if a mutable variable of this name has not been
allocated.

The let x = a1 in a2 construct from the exception effect system is also included
in the source language. As in the implemented exception effect system recursive
functions are permitted in this language.

The match a1 with pats | x → a2 construct has also transferred to this system
from the exception effect system upon which this effect system is based. The
set of permitted patterns has been reduced as exceptions are not part of this
language and therefore exception patterns should not be part of this language.

To allow more interesting experiments to be carried out the if a1 then a2 else a3

construct has been included in this language. Arithmetic, logical and comparison
operators are also in the source language.

4.2.2 The Type Algebra

The type system is based upon the following type algebra.

Type Expressions: τ ::= α type variable
| int[ϕ] integer type
| ref[ϕ] reference type
| bool boolean type
| unit unit type

| τ1
ϕ→ τ2 function type

Type Schemes: σ ::= ∀αi, ρj, δk.τ
Rows: ϕ ::= ρ :: K(ρ) row variable and kind

| > all possible elements
| ε; ϕ element ε plus what is in ϕ
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Row elements: ε ::= i : π integer constant
| x : τ mutable variable

Presence annotations: π ::= Pre element is present
| δ presence variable

Kinds: K ::= INT(integer list) integer kind
| VAR(variable list) variable kind

This system contains four base types; the integer type, the reference type, the
boolean type and the unit type.

As in the exception effect system integer types are annotated with a row indi-
cating the possible values that an expression of type int[ϕ] may evaluate to.
The reference type is also annotated with a row indicating the possible mutable
variables that an expression of type ref[ϕ] can evaluate to. As in the previous
effect system a row is made up of a sequence of row elements and terminated by
a row variable. However the set of possible row elements has changed. A row
element may now represent an integer or a mutable variable. A row can contain
either a sequence of integers or mutable variables but not a mixture. The mutable
variable row element has an associated type indicating the possible values that
may be in the mutable cell referenced by the mutable variable. Again > is used
to represent the effectively infinite set of integers.

For ease of implementation the boolean type remains unannotated. The unit
type is also unannoted as, like in ML, there is no value associated with this type.

The function type is labelled with a row indicating the set of mutable variables
which may be assigned to by this function.

4.2.3 The Kinding Rules

The kinding rules ensure correct kinding and well-formedness.

4.2.3.1 Kinding

` ρ :: K(ρ) ` > :: INT(S)
i 6∈ S ` ϕ :: INT(S ∪ {i})
` (i : π; ϕ) :: INT(S)

x 6∈ S ` ϕ :: VAR(S ∪ {x}) ` τ wf

` (x : τ ; ϕ) :: VAR(S)
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4.2.3.2 Well-formedness

` α wf ` bool wf ` unit wf

` ϕ :: INT(∅)
` int[ϕ] wf

` ϕ :: VAR(∅)
` var[ϕ] wf

` τ1 wf ` ϕ :: VAR(∅) ` τ2 wf

` τ1
ϕ→ τ2 wf

A similar set of structural invariants to those in the exception effect system must
hold on a row.

1. A given integer constant or mutable variable constructor should occur at
most once in a row.

2. A row variable ρ is preceded by the same set of integer constants or mutable
variable constructors in all row expressions where it occurs.

3. A row ϕ annotating an integer type int[ϕ] can only contain integer row
elements.

4. A row ϕ annotating a reference type var[ϕ] or a function type τ1
ϕ→ τ2 can

contain only mutable variable row elements and must not end with >.

These rules ensure the existence of principal unifiers and principal typings. They
ensure separation between the annotations of integer types and reference types.

4.2.4 The Typing Rules

4.2.4.1 Initial Environment

The initial typing environment E0 includes predefined functions which will im-
plement the arithmetic, logical and comparison operators.

E0 = { +,−, ∗ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ int[>],

/ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

Div:Pre;ρ4−→ int[>],

orelse, andalso : ∀ρ1ρ2.bool
ρ1→ bool

ρ2→ bool,

not : ∀ρ1.bool
ρ1→ bool,

=, <>,<, >, <=, >=: ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ bool}

Mutable variable allocation is carried out using the val x = ref a1 language con-
struct. This is achieved by mapping the identifier x to Gen(ref[x : τ1; ρ], E0, ϕ1)
in the inital environment, where τ1 is the type of a1, ϕ1 the effect of a1, ρ is a
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new row variable of kind VAR(x) and Gen is the generalization auxiliary function.

4.2.4.2 Typing of Expressions

The typing rules for the system follow.

τ ≤ E(x)

E ` x : τ
ID

` ϕ′ :: INT({i}) ` ϕ :: VAR(∅)
E ` i : int[i : Pre; ϕ′]/ϕ

INT

` ϕ :: VAR(∅)
E ` true : bool/ϕ

TRUE
` ϕ :: VAR(∅)

E ` false : bool/ϕ
FALSE

E ` not (a) : τ/ϕ

E ` not a : τ/ϕ
NOT

E ` ◦ (a1) (a2) : τ/ϕ

E ` a1 ◦ a2 : τ/ϕ
BOP

E ` a1 : ref[ϕ′]/ϕ

E `!a1 : ConcatenateRefs(ϕ′)/ϕ
DEREF

E ` a1 : ref[ϕ′]/ϕ E ` a2 : τ/ϕ E ` ϕ′′ = UpdateRefs(τ, ϕ′)

E ` a1 := a2 : unit/ϕ′′ ASSIGN

` τ1 wf E ⊕ {x : τ1} ` a : τ2/ϕ
′ ` ϕ :: EXN(∅)

E ` λx.a : (τ1
ϕ′
→ τ2)/ϕ

ABS

E ` a1 : (τ ′ ϕ→ τ)/ϕ E ` a2 : τ ′/ϕ

E ` a1(a2) : τ/ϕ
APP

E ⊕ {x : Gen(τ1, E, ϕ)} ` a1 : τ1/ϕ E ⊕ {x : Gen(τ1, E, ϕ)} ` a2 : τ/ϕ

E ` let x = a1 in a2 : τ/ϕ
LET

E ` a1 : τ1/ϕ ` p : τ1 ⇒ E ′

` τ1 − p ; τ2 E ⊕ E ′ ` a2 : τ/ϕ E ⊕ {x : τ2} ` a3 : τ/ϕ

E ` match a1 with p→ a2 | x→ a3 : τ/ϕ
MATCH

E ` a1 : bool/ϕ E ` a2 : τ/ϕ ` a3 : τ/ϕ

E ` if a1 then a2 else a3 : τ/ϕ
IF

E1 ⊕ E2 is the asymetric concatenation of the two environments E1 and E2.
E1 ⊕ E2 (x) = E2 (x) if x ∈ Dom(E2) and E1 ⊕ E2 (x) = E1 (x) if x ∈
Dom(E1) \Dom(E2).

4.2.4.3 Typing of Patterns

` x : τ ⇒ {x : τ} ` i : int[i : π; ϕ]⇒ {}
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4.2.4.4 Pattern Subtraction

` int[i : π; ϕ]− i ; int[i : π′; ϕ]
` τ ′ wf

` τ − x ; τ ′

4.2.4.5 Instantiation and Generalization

τ ′ ≤ ∀αiρjδk.τ if and only if there exists τi, ϕj, πk such that ` τi wf and ` ϕj ::
K(ρj) and τ ′ = τ{αi ← τi, ρj ← ϕj, δk ← πk}

Gen(τ, E, ϕ) is ∀αiρjδk.τ where {αi, ρj, δk} = FV (τ) \ (FV (E) ∪ FV (ϕ))

4.2.4.6 Reference Operations

These reference operations are necessary as a term may evaluate to more than
one mutable variable.

ConcatenateRefs(ϕ) returns the union of all the types in the mutable vari-
able constructors in a row, ϕ, made up of a sequence of mutable variable row
elements. For example if ϕ is x : int[1 : Pre; ρ]; y : int[2 : Pre; ρ′]); ρ′′ indicat-
ing that the mutable variable x is a reference to the integer 1 and the muta-
ble variable y is a reference to the integer 2 then ConcatenateRefs(ϕ) returns
int[1 : Pre; 2 : Pre; ρ′′′] the union of the types associated with the mutable vari-
ables x and y (a term of this type may evaluate to the integer 1 or the integer
2).

UpdateRefs(τ, ϕ) updates the type in each mutable variable constructor in a row,
ϕ, made up of a sequence of mutable variable row elements to indicate that each
mutable variable may evaluate to a type of τ . The updated row is returned by the
function. If ϕ is of the form x : τ ′; ρ (ie. contains only one mutable variable con-
structor) then the row x : τ ; ρ is returned. If ϕ is of the form x1 : τ ′

1; . . . ; xn : τ ′
n; ρ

(ie. contains more than one mutable variable constructor) then the row x1 : τ ′
1⊗

τ ; . . . ; xn : τ ′
n⊗τ ; ρ is returned where τ ′⊗τ is the union of the two types τ ′ and τ .

For example if τ is int[3 : Pre; ] and ϕ is x : int[1 : Pre; ρ]; y : int[2 : Pre; ρ′]); ρ′′

inidicating that the mutable variable x is a reference to the integer 1 and the
mutable variable y is a reference to the integer 2 then UpdateRefs(τ, ϕ) re-
turns x : int[1 : Pre; 3 : Pre; ρ]; y : int[2 : Pre; 3 : Pre; ρ′]); ρ′′ indicating inidicat-
ing that the mutable variable x is a reference to the integer 1 or 3 and the mutable
variable y is a reference to the integer 2 or 3.

Most of the typing rules are identical to the rules for the exception effect system
discussed earlier (except using VAR(∅) rather than EXN(∅) as the effect component
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of rules which have no effect). The most interesting rules are the new DEREF and
ASSIGN rules.

The DEREF rule governs how the system analyses the dereferencing of a term.
This uses the auxiliary function ConcatenateRefs(ϕ) which returns the union of
all the type annotations in the row ϕ which is a sequence of mutable variable row
elements. This is necessary as the mutable variable being dereferenced may be
any of the mutable variables in this row so the type returned must be the union
of all the types referenced by these variables.

The ASSIGN rule assigns to a mutable variable. However the system may be-
lieve that a term may evaluate to multiple mutable variables. Therefore the
UpdateRefs(τ, ϕ) is used to update the value associated with each mutable vari-
able which may possibly be assigned to.

4.3 Implementation

The implemented system is based on the implemented exception effect system.

4.3.1 Using the implementation

Much of the code base for the exception effect system was used for the implemen-
tation of this storage effect system. The division of the source code is the same
in both implementations. Again a parser and lexer have also been implemented
using mosmllex and mosmlyacc. The required files are compiled and linked using
mosmlc. The effect system is started using a single command which begins the
mosml environment. Program analysis can be carried out on a specified file or
on user input to the command line.

4.4 Experimentation

The following section contains experiments illustrating the behaviour and output
of the implementation. Analysis of this behaviour and output is also carried out.

4.4.1 Simple Typings

The val x = ref a construct is used to create mutable variables (it must appear
at the beginning of a program).
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val x = ref 1; x

The type of the program is ref[x : int[1 : Pre; ρ]; ρ′] and the effect is ρ′′.

The program evaluates to the mutable variable x.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.

Dereferencing is achieved, as in ML, using the ! operator.

val x = ref 1; !x

The type of the program is int[1 : Pre; ρ] and the effect is ρ′. The pretty printer
returns the following output.

The program evaluates to the integer 1.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.

Again adopting ML syntax, assignment to a mutable variable is accomplished
using the := operator.

val x = ref 1; x := 2

The type of the program is unit and the effect is x : int[2 : Pre; ρ]; ρ′. The pretty
printer returns the following output.

The program evaluates to the unit type.
The mutable variable x is altered by this program.
The mutable variable x is a reference to the integer value 2.

4.4.2 Dereferencing

Dereferencing becomes more interesting when the term being dereferenced is not
a variable. Considering the dereferencing of a function in the following example
(note the function being dereferenced is somewhat artificial in that it always
returns the mutable variable x irrespective of its argument).

val x = ref 1;
let func = λn. x
in !(func (2))

The type of this program is int[1 : Pre; ρ] and the effect is ρ′. The pretty printer
returns the following output.

The program evaluates to the integer 1.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.
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4.4.3 Assignment

Analysis of assignment, like dereferencing, is more difficult when the term being
assigned to is not a variable. For example again consider assignment to the result
of a function application (as in the previous example the function being consider
is in itself not very interesting).

val x = ref 1;
let func = λn. x
in (func (2)) := 3

The type of this program is unit and the effect is x : int[3 : Pre; ρ]; ρ′. The
pretty printer returns the following output.

The program evaluates to the unit type.
The mutable variable x is altered by this program.
The mutable variable x is a reference to the integer value 3.

4.4.4 Selection Operation

The if a1 then a2 else a3 construct may mean that a term may evaluate to
more than one mutable variable.

val x = ref 1, val y = ref 2;
if !x >!y then x else y

The type of this program is ref[y : int[2 : Pre; ρ]; x : int[1 : Pre; ρ′]; ρ′′] and the
effect is ρ′′′. The pretty printer returns the following output.

The program evaluates to the mutable variables x or y.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.
The mutable variable y is a reference to the integer value 2.

Dereferencing must take into account all mutable variables which a term (such
as the previous example) may evaluate to. Consider the following example.

val x = ref 1, val y = ref 2;
!(if !x >!y then x else y)

The type of this program is int[2 : Pre; 1 : Pre; ρ] and the effect is ρ′. The pretty
printer returns the following output.

The program evaluates to the integer values 1 or 2.
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No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.
The mutable variable y is a reference to the integer value 2.

Assigning to a term evaluating to multiple mutable variables must also consider
all possible variables which may be altered.

val x = ref 1, val y = ref 2;
(if !x > !y then x else y) := 3

The type of this program is unit and the effect is
y : int[3 : Pre; 2 : Pre; ρ]; x : int[3 : Pre; 1 : Pre; ρ′]; ρ′′. The pretty printer re-
turns the following output.

The program evaluates to the unit type.
The mutable variable x or y may be altered by this program.
The mutable variable x is a reference to the integer value 1 or 3.
The mutable variable y is a reference to the integer value 2 or 3.

4.4.5 Pattern Matching

Due to the use of similar type representations and algorithms as those in the
exception effect system much of the power of this system is also present in this
storage effect system. The (simplified) pattern matching construct match from
the exception effect system has transferred across to this effect system.

val x = ref 1;
match !x with 1→ 2 | y→ 3

The type of this program is int[3 : Pre; 2 : Pre; ρ] and the effect is ρ′. The pretty
printer returns the following output.

The program evaluates to the integer values 3 or 2.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.

Note that the match language construct (like the if construct) can evaluate to
multiple mutable variables.

val x = ref 1, val y = ref 2;
(match !x with 1→ x | a→ y) := 3

The type of this program is unit and the effect is
y : int[3 : Pre; 2 : Pre; ρ]; x : int[3 : Pre; 1 : Pre; ρ′]; ρ′′. The pretty printer re-
turns the following output.
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The program evaluates to the unit type.
The mutable variable x or y may be altered by this program.
The mutable variable x is a reference to the integer value 1 or 3.
The mutable variable y is a reference to the integer value 2 or 3.

4.4.6 Function References

References to functions are also possible in the system

val x = ref(let func = λn. n in func);
!x (1)

The type of this program is int[1 : Pre; ρ] and the effect is ρ′. The pretty printer
returns the following output.

The program evaluates to the integer value 1.
No mutable variables are altered by this program.
The mutable variable x is a reference to a function of type int→ int.

4.4.7 References to References

References to references are allowed in the system.

val x = ref 1, val y = ref x

!y

The type of this program is ref[x : int[1 : Pre; ρ]; ρ′] and the effect is ρ′′. The
pretty printer returns the following output.

The program evaluates to the mutable variable x.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.
The mutable variable y is a reference to the mutable variable x.

As stated in the introduction references to references introduce the problem of
aliasing where two mutable variables are bound to the same reference cell. As-
signing to one of these variables will therefore alter the referenced value of the
other. Consider the following example.

val x = ref 1, val y = ref x

let val useless = x := 2

in !(!y)

Clearly the mutable cell associated with x has been changed however the ef-
fect system does not detect this. The effect systems types this program as
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int[1 : Pre; ρ] with effect x : int[2 : Pre; ρ′]; ρ′′. This is incorrect as the type
of the program should be int[2 : Pre; ρ]. An interesting but difficult extension
to this project would be to implement a storage effect system which deals with
this aliasing issue.

In order to prevent this problem in the implemented system the type of the term
a1 bound to x in the let x = a1 in a2 contract cannot be unit. This however
prevents sequencing in this language.

4.4.8 Conclusion

The experiments carried out and the results produced show the power of the
implemented storage effect system. As noted in the conclusion to the previous
chapter much of this power is obtained due to the annotation of the analysed base
types (excluding the unit and bool base type). Once the effect to be analysed
was chosen and the appropriate representation of this effect decided the original
system was easily manipulated in order to analyse the storage effect.

Although the experiments performed and the return results appeared to be cor-
rect no formal proof of the soundness of this effect system has been provided.
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5. Combined Effect System

5.1 Overview

The final effect system considered is a combination of the exception and storage
effect systems. The amalgamated system can analyse both the effect of raising
and handling an exception and also the effect of allocating, dereferencing and
assigning to a mutable variable.

The effect system has been implemented and experiments run as detailed in this
chapter.

5.2 The Effect System

This section provides a description of the implemented effect system.

5.2.1 The Source Language

The source language is based on a small subset of ML which allows both the rais-
ing and handling of exceptions and the allocation, assignment and dereferencing
of mutable variables. As in the previously implemented effect systems it allows
higher-order functions, recursive functions and (simplified) pattern matching.

Program: prog ::= edecs vdecs a | edecs a program
vdecs a | a

Exception Decs: edecs ::= edec, edecs multiple declarations
| edec; single declaration

Exception Dec: edec ::= exception C constant exception
| exception D(type) parameterized exception

Variable Decs: vdecs ::= vdec, vdecs multiple declarations
| vdec; single declaration

Variable Dec: vdec ::= val x = ref a mutable variable
Type: type ::= int integer type

| exn exception type
| bool boolean type
| ref reference type
| type→ type function type

Term: a ::= x identifier

41
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| i integer constant
| !(a1) dereference
| a1 := a2 assignment
| λx.a abstraction
| a1(a2) application
| let x = a1 in a2 the let binding
| match a1 with pats | x→ a2 pattern-matching
| C | D(a) exception constructors
| try a1 with x→ a2 exception handler
| if a1 then a2 else a3 selection operation
| a1 + a2 | a1 − a2 arithmetic operators
| a1 ∗ a2 | a1/a2

| a1 orelse a2 logical operators
| a1 andalso a2

| not(a1)
| a1 = a2 | a1 <> a2 comparison operators
| a1 > a2 | a1 < a2

| a1 >= a2 | a1 <= a2

Patterns: pats ::= p→ a | pats multi-case pattern
| p single case pattern

Pattern: p ::= x variable pattern
| i | C constant patterns
| D(p) constructed pattern

The source language is a concatenation of the source languages as described in
the two previous chapters. Note that any user defined exceptions are declared
before the allocation of any mutable variables.

5.2.2 The Type Algebra

The type system is based upon the following type algebra.

Type Expressions: τ ::= α type variable
| int[ϕ] integer type
| exn[ϕ] exception type
| ref[ϕ] reference type
| bool boolean type
| unit unit type

| τ1
ϕ1, ϕ2→ τ2 function type

Type Schemes: σ ::= ∀αi, ρj, δk.τ
Rows: ϕ ::= ρ :: K(ρ) row variable and kind

| > all possible elements
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| ε; ϕ element ε plus what is in ϕ
Row elements: ε ::= i : π integer constant

| C : π constant exception
| D(τ) parameterized exception
| x : τ mutable variable

Presence annotations: π ::= Pre element is present
| δ presence variable

Kinds: K ::= INT(integer list) integer kind
| EXN(set of exceptions) exception kind
| VAR(variable list) variable kind

The type algebra contains five base types; the integer type, the exception type,
the reference type, the boolean type and the unit type. The integer, exception
and reference types are annotated with rows indicating the possible values a
term of this type may evaluate to. As before a row is made up of a sequence of
row elements and terminated with a row variable. The set of row elements are
integer constants, exception constructors and mutable variable constructors. A
row cannot contain a mixture of these row elements. As before the boolean and
unit types remain unannotated.

Note that the function type is now annotated with two rows indicating both the
exception effect and the storage effect which may occur on application of this
function.

5.2.3 The Kinding Rules

The kinding rules ensure correct kinding and well-formedness.

5.2.3.1 Kinding

` ρ :: K(ρ) ` > :: INT(S)
i 6∈ S ` ϕ :: INT(S ∪ {i})
` (i : π; ϕ) :: INT(S)

C 6∈ S ` ϕ :: EXN(S ∪ {C})
` (C : π; ϕ) :: EXN(S)

D 6∈ S ` ϕ :: EXN(S ∪ {D}) ` τ wf

` (D(τ); ϕ) :: EXN(S)

x 6∈ S ` ϕ :: VAR(S ∪ {x}) ` τ wf

` (x : τ ; ϕ) :: VAR(S)
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5.2.3.2 Well-formedness

` α wf ` bool wf ` unit wf

` ϕ :: INT(∅)
` int[ϕ] wf

` ϕ :: EXN(∅)
` exn[ϕ] wf

` ϕ :: VAR(∅)
` var[ϕ] wf

` τ1 wf ` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅) ` τ2 wf

` τ1
ϕ1, ϕ2→ τ2 wf

These rules enforce similar structural invariants as those enforced by the kinding
rules in chapters 3 and 4. The invariants ensure the existence of principal unifers
and principal typings. They also guarantatee that the annotations of integer
types, exception types and reference types remain separate.

The most important change to these rules from previous iterations in earlier chap-
ters is the annotation of function types by two effects and the kinding constraints
placed upon both of these effects.

5.2.4 The Typing Rules

5.2.4.1 Initial Environment

The initial typing environment E0 includes predefined functions which will im-
plement the arithmetic, logical and comparison operators and the raise function
to raise an exception.

E0 = {raise : ∀α, ρ.exn[ρ]
ρ→ α,

+,−, ∗ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ int[>],

/ : ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

Div:Pre;ρ4−→ int[>],

orelse, andalso : ∀ρ1ρ2.bool
ρ1→ bool

ρ2→ bool,

not : ∀ρ1.bool
ρ1→ bool,

=, <>, <, >, <=, >=: ∀ρ1ρ2ρ3ρ4.int[ρ1]
ρ2→ int[ρ3]

ρ4→ bool}

A number of predeclared exceptions have also been included in the system. As
in the storage effect system, mutable variable allocation is achieved by updating
the initial environment.

5.2.4.2 Typing of Expressions

The typing rules for the system follow.
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τ ≤ E(x)

E ` x : τ
ID

` ϕ′ :: INT({i}) ` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅)
E ` i : int[i : Pre; ϕ′]/ϕ1, ϕ2

INT

` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅)
E ` true : bool/ϕ1, ϕ2

TRUE

` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅)
E ` false : bool/ϕ1, ϕ2

FALSE

E ` not (a) : τ/ϕ1, ϕ2

E ` not a : τ/ϕ, ϕ2

NOT
E ` ◦ (a1) (a2) : τ/ϕ1, ϕ2

E ` a1 ◦ a2 : τ/ϕ, ϕ2

BOP

E ` a1 : ref[ϕ′
2]/ϕ1, ϕ2

E `!a1 : ConcatenateRefs(ϕ′
2)/ϕ1, ϕ2

DEREF

E ` a1 : ref[ϕ′
2]/ϕ1, ϕ2

E ` a2 : τ/ϕ1, ϕ2 E ` ϕ′′
2 = UpdateRefs(τ, ϕ′

2)

E ` a1 := a2 : unit/ϕ1, ϕ′′
2

ASSIGN

` τ1 wf

E ⊕ {x : τ1} ` a : τ2/ϕ
′
1, ϕ′

2 ` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅)

E ` λx.a : (τ1

ϕ′
1, ϕ′

2→ τ2)/ϕ1, ϕ2

ABS

E ` a1 : (τ ′ ϕ1, ϕ2→ τ)/ϕ1, ϕ2 E ` a2 : τ ′/ϕ1, ϕ2

E ` a1(a2) : τ/ϕ1, ϕ2

APP

E ⊕ {x : Gen(τ1, E, ϕ1, ϕ2)} ` a1 : τ1/ϕ1, ϕ2

E ⊕ {x : Gen(τ1, E, ϕ1, ϕ2)} ` a2 : τ/ϕ1, ϕ2

E ` let x = a1 in a2 : τ/ϕ1, ϕ2

LET

E ` a1 : τ1/ϕ1, ϕ2 ` p : τ1 ⇒ E ′ ` τ1 − p ; τ2

E ⊕ E ′ ` a2 : τ/ϕ1, ϕ2 E ⊕ {x : τ2} ` a3 : τ/ϕ1, ϕ2

E ` match a1 with p→ a2 | x→ a3 : τ/ϕ1, ϕ2

MATCH

` ϕ′
1 :: EXN({C}) ` ϕ1 :: EXN(∅) ` ϕ2 :: VAR(∅)

E ` C : exn[C : Pre; ϕ′
1]/ϕ1, ϕ2

EXC

τ ≤ TypeArg(D) E ` a : τ/ϕ1, ϕ2 ` ϕ′
1 : EXN({D})

E ` D(a) : exn[D(τ); ϕ′
1]/ϕ1, ϕ2

PEXC

E ` a1 : τ/ϕ′
1 E ⊕ {x : exn[ϕ′

1]} ` a2 : τ/ϕ1, ϕ2

E ` try a1 with x→ a2 : τ/ϕ1, ϕ2

TRY
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E ` a1 : bool/ϕ1, ϕ2 E ` a2 : τ/ϕ1, ϕ2 ` a3 : τ/ϕ1, ϕ2

E ` if a1 then a2 else a3 : τ/ϕ1, ϕ2

IF

E1 ⊕ E2 is the asymetric concatenation of the two environments E1 and E2.
E1 ⊕ E2 (x) = E2 (x) if x ∈ Dom(E2) and E1 ⊕ E2 (x) = E1 (x) if x ∈
Dom(E1) \Dom(E2).

5.2.4.3 Typing of Patterns

` x : τ ⇒ {x : τ} ` i : int[i : π; ϕ]⇒ {}

` C : exn[C : π; ϕ]⇒ {}
τ ≤ TypeArg(D) ` p : τ ⇒ E

` D(p) : exn[D(τ); ϕ]⇒ E

5.2.4.4 Pattern Subtraction

` int[i : π; ϕ]− i ; int[i : π′; ϕ] ` exn[C : π; ϕ]− C ; exn[C : π′; ϕ]

` τ ′ wf

` τ − x ; τ ′
` τ − p ; τ ′

` exn[D(τ); ϕ]−D(p) ; exn[D(τ ′); ϕ]

5.2.4.5 Instantiation and Generalization

τ ′ ≤ ∀αiρjδk.τ if and only if there exists τi, ϕj, πk such that ` τi wf and ` ϕj ::
K(ρj) and τ ′ = τ{αi ← τi, ρj ← ϕj, δk ← πk}

Gen(τ, E, ϕ) is ∀αiρjδk.τ where {αi, ρj, δk} = FV (τ) \ (FV (E) ∪ FV (ϕ))

5.2.4.6 Reference Operations

These reference operations are necessary as a term may evaluate to more than
one mutable variable.

ConcatenateRefs(ϕ2) returns the union of all the types in the mutable variable
constructors in a row, ϕ2, made up of a sequence of mutable variable row elements.

UpdateRefs(τ, ϕ) updates the type in each mutable variable constructor in a
row, ϕ, made up of a sequence of mutable variable row elements to indicate
that each mutable variable may evaluate to a type of τ . The updated row is
returned by the function. If ϕ is of the form x : τ ′; ρ (ie. contains only one
mutable variable constructor) then the row x : τ ; ρ is returned. If ϕ is of the form
x1 : τ ′

1; . . . ; xn : τ ′
n; ρ (ie. contains more than one mutable variable constructor)



5.3. IMPLEMENTATION 47

then the row x1 : τ ′
1 ⊗ τ ; . . . ; xn : τ ′

n ⊗ τ ; ρ is returned where τ ′ ⊗ τ is the union
of the two types τ ′ and τ .

The type inference rules are the combination of the type inference rules for both
of the previous effect systems. They have been altered so that they have an effect
component for both the exception effect and the storage effect.

5.3 Implementation

The implemented system is based on the combination of the source code for both
of the previously implemented effect system.

5.3.1 Using the Implementation

The implemented combined effect system is used in the same way as both the
implemented exception effect system and the implemented storage effect system.
Again the effect system is started using a single command starting the mosml
environment. Analysis is then carried out on command line input or a specified
file. A parser, lexer and pretty printer have all been implemented.

5.4 Experimentation

The following section contains experiments illustrating some of the behaviour of
and the resulting output produced by the implementation.

5.4.1 Exception References

A mutable variable which is a reference to an exception can be allocated, deref-
erenced and assigned to by this system.

exception C1, exception C2;
val x = ref 1, val y = ref 2, val c1ref = ref C1, val c2ref = ref C2;
raise (!(if !x >!y then c1Ref else c2Ref))

The type of this program is α, the exception effect is C2 : Pre; C1 : Pre; ρ and the
storage effect is ρ′. The pretty printer returns the following output.
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An exception always escapes from this program.
The exceptions C2 and C1 may escape from this program.
No mutable variables are altered by this program.
The mutable variable x is a reference to the integer value 1.
The mutable variable y is a reference to the integer value 2.
The mutable variable c1ref is a reference to the exception C1.
The mutable variable c2ref is a reference to the exception C2.

5.4.2 Reference Parameterized Exceptions

An exception may be parameterized with a reference variable.

exception D(ref);
val xRef = ref 1;
(try raise (D(xRef))
with x→ match x with D(x)→ x | y→ raise (y)) := 2

The type of this program is unit, the exception effect is D(α); ρ and the storage
effect is xRef : int[2 : Pre; ρ′]; rho′′. The pretty printer returns the following
output.

The program evaluates to the unit type.
No exception escapes from this program.
The mutable variable x is altered by this program.
The mutable variable x is a reference to the integer value 2.

5.5 Conclusion

The implemented system is powerful in that it accurately analyses the effects of
a program even when the behaviour of the possible exception effects and storage
effects are in some way related as shown in the examples. The small set of
examples detailed is far from a complete representation of the complete behaviour
of the system. As with the augmented effect system and the storage effect system
an important extension may be to prove the soundness of this type system.



6. Conclusion

In this project effect systems were implemented and evaluated for the effect of
raising and handling exceptions and for the effect of allocating, assigning and
dereferencing mutable variables. These system were then combined to create an
effect system able to analyse both of these computational effects. This combined
system was also implemented and tests performed.

The experiments detailed in this document and the analysis carried out in the
relevant chapters show that the implemented effect systems gave quite detailed
information concerning the possible effects of executing a program. Much of the
power of these systems came from the annotation of some of the base types and
the function type in these systems. These annotations increased the accuracy of
the analysis carried out by the effect systems as they indicated the values a term
may evaluate to and the effects that a function application may cause.

The annotated base types had associated rows indicating the values that a term of
this base type may have. In order to reduce the complexity of the project not all
base types were implemented. The boolean type was one such unannotated type.
A relatively simple extension of the implemented system would be to annotate
this type as due to the small size of the boolean set some powerful inference rules
could be designed for the selection operation and logical operators. Note the unit
type was also unannotated as, like in ML, this has not associated value. Function
types are annotated with rows indicating the possible effects of the application
of this function (although the effect of the parameters to a function must also be
considered).

Some problems highlighted with the implemented systems included the issue of
pretty printing the possible result of the application of a function discussed in
chapter 3. Also the problem of aliasing of mutable variables still has not been
satisfactorily resolved analysed. The simple solution in place currently removes
the possibility of imperative sequencing which may be desirable in the source
language to be analysed.

Important extensions to this project would to prove the soundness of the aug-
mented exception effect system, the storage effect system and the combined effect
system. Such a proof was carried out for the original effect system described in
the Leroy and Pessaux paper [5].

The experiments performed and described in this document are somewhat artifi-
cal (except perhaps the change function). It would be interesting to consider the
applicability of the described effect systems to real programs.

Leroy and Pessaux also suggest in their paper extension of the original exception
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effect system to the entire ML language. This could be considered for both the
storage effect system and the combined effect system as well as the augmented
exception effect system.
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